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EXECUTIVE SUMMARY 

This report contains one interim report, together with the most recent results. Part I describes the 
work done during a visit by Mr Bosch of the Topographic Engineering Center, Alexandria. Part II describes 
the analysis of selected pixels from part of a SPOT image of Fort A. P. Hill. They were chosen to represent 
several different types of ground cover. The NIR part of the spectrum was analysed for these pixels. There 
were seven classes of pixels and the values in each were subject to an exploratory data analysis. The results 
show that several classes have distinct characteristics that were distinguished by the variograms of the class 
data and their model parameters. 

Part m describes the analysis of hyperspectral data: the hydice imagery for Fort Hood and hymap imagery 
for Fort A. P. Hill. Pixels were selected for six different ground cover classes at each site. The spectrum for 
each pixel was plotted and examined visually. All of the experimental variograms computed for each 
spectrum showed evidence of trend and this was usually removed satisfactorily by linear and quadratic 
functions. The variograms were recomputed on the residuals and modelled with several periodic functions 
for which a program was written in GenStat. For Fort Hood the spectra vary considerable for the different 
ground cover classes and the variograms have certain distinctive features. The spectra for Fort A. P. Hill are 
less distinctive apart from one class, but the amplitudes of the periodic functions fitted to the variograms 
provide one means of discrimination. To explore these data further principal component analyses were 
done. For both sites three components accounted for most of the variation. Certain sections of the spectrum 
accounted for the variation on these axes. When the pixels were plotted in a projection of the first two 
components four clear groups were evident for Fort Hood and three for A. P. Hill. A non-hierarchical 
multivariate method of classification was applied to 50% of the waveband data and to the scores of the 
leading principal components. The results using the latter provided the best discrimination and the best 
relation with the ground cover classes. There are features in the spectra and the variograms that enable 
discrimination between ground cover classes, which is supported by the multivariate analyses. 

Appendix I is a GenStat program to fit periodic functions to the experimental variogram. In addition 
Appendix II is the text of another paper resulting from work with Mr Shine and Mr Slocum. This 
has been submitted to the International Journal of Remote Sensing. The comparison between the 
usual variogram estimator (Matheron's method of moments) and the wavelet based variograms is 
given in Appendix U. The results suggest that the wavelet variograms can remove long-range trend 
features whether they arise from stepped functions, such as those related to the boundaries between 
different types of soil or rock, or from smooth variation that can be represented by a trend surface. 
This would avoid the need to examine the data for trend first. The effects of local trend or drift, 
which are less common in most earth science data, appear to be amplified by the wavelet-based 
variograms, however. An oral presentation of this work will be made at the GeostatsUK meeting in 
Reading, England, in March 2002. Professor Webster has devoted most of his time on this contract 
to preparing the theoretical part of the text with Mr Bosch for publication and writing Fortran code 
for the simulations. 



PART I    REPORT ON VISIT BY E. BOSCH 

The purpose of the visit by Mr Bosch was to continue with our work to publish a 
paper on the wavelet variogram. This was started as part of the previous project and is 
now nearing completion. Professor Webster has made considerable input into this in 
making the mathematics more comprehensible to non-mathematicians. The paper 
shows the relation between the conventional variogram of geostatistics and a 
variogram based on the wavelet transform. The discovery of the relation by Mr Bosch 
is novel as far as we know. 

Professor Webster spent three days working with us on this and during this time many 
analyses were done to try to gain insight into what the two approaches do. The 
analyses were done on two sets of real data and one set of simulated data. It seems 
that if there is long-range trend present in the data the wavelet variogram can deal 
with it whereas it must be removed before the analysis of the conventional variogram. 
Also where there are distinct boundaries (different classes of soil along a transect) it 
seems that the Daubechies wavelet variogram disregards the effect of the boundaries 
and the variogram relates to the variation between the class boundaries. 

The other two days that Mr Bosch was in Reading were spent in preparing data for 
analysis during the second part of this project. In addition, we examined different 
levels of thresholding in a wavelet analysis of the Fort A. P. Hill SPOT data. The aim 
of this is to compare wavelet multiresolution analysis and factorial kriging. These 
results will be added to the paper presented at the International Geostatistics Congress 
in 2000 for publication in the International Journal of Remote Sensing. 

PART II    ANALYSIS OF SELECTED CLASSES OF GROUND COVER AT 
FORT A. P. HILL 

Figure la shows the MR values from the SPOT image of Fort A. P. Hill as a pixel 
map. Figure lb, derived from Matlab, shows the location of the seven classes. By 
comparing the two maps it is clear that the classes relate to areas with identifiable 
levels of reflectance in the MR waveband. Some classes are similar, but they are in 
different parts of the scene. Class 10 is the least homogeneous, which can be seen if 
Figure la is examined carefully. It incorporates both valley and spur components. 
Class 20 appears to be an open area from the topographic sheet and on a valley side 
between a spur or upland area and valley bottom. Classes 30 and 40 are upland or spur 
areas with low to intermediate reflectance values. Classes 50 and 60 are valley areas 
and appear to be more homogeneous than many of the other classes. Class 70 appears 
to be unwooded in part and on a spur. 
Table 1 gives the summary statistics of the seven ground cover classes for near infra 
red (NIR)spectral values. Class 10 is the most variable class (see Figure 2a) and also 
in terms of the coefficient of variation. Classes 20 and 40 are the least variable, i.e. the 
most homogeneous (see Figures 3a and 5a). The remaining four classes have similar 
coefficients of variation, Table 1. The less variation there is within the class the 
greater its coherence. Classes 20 and 30 have similar mean values, as do classes 40 
and 70, and 50 and 60. Class 10, as already noted, is different from the other classes 
and this is also the case with respect to the mean. 



The histogram of class 10 suggests that the statistical distribution is bimodal. Again 
this shows its difference from the other classes and probably reflects the spur and 
valley components in the class. As a consequence it might have been beneficial to do 
the variogram analysis of the two strata separately. However, there were insufficient 
data for this. All of the other histograms show a unimodal distribution. The values for 
all classes have a near-normal distribution as shown by the histograms and the 
skewness values. Therefore, no transformation of the data was necessary. 

Table 1: Summary statistics for the six spectral classes for Fort A. P. Hill. 

Classes 
Parameter 10 20 30            40 50 60 70 
Number   of 
observations 183 146 192          161 167 193 113 
Mean 126.0 118.1 114.0 98.59 141.1 140.1 102.2 
Median 128.0 119.0 113.0 99.0 142.0 141.0 103.0 
Minimum 107.0 109.0 95.0 90.0 119.0 122.0 90.0 
Maximum 148.0 125.0 131.0 110.0 166.0 169.0 116.0 
Variance 102.9 13.62 60.67 15.33 78.06 68.03 28.38 
Standard 
deviation 10.14 3.690 7.789 3.915 8.835 8.248 5.327 
Coefficient 
of variation 8.048 3.127 6.832 3.971 6.266 5.891 5.223 
Skewness -0.160 -0.443 0.237 0.115 0.085 0.359 0.024 
Kurtosis -1.172 -0.134 -0.606 -0.098 0.053 0.934 -0.046 
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Figure 1. a) Part of SPOT image for Fort A. P. Hill, b) locations of six of the seven 
classes from the SPOT image of A. P. Hill. 



Class 10 
Figure 2a shows the pixel map of the NIR values, which cover a wide range. There is 
an upland area in the middle between two lowland or valley areas. The axes are 
pixels, each of which is 20 m x 20 m. The variogram for class 10 was the most 
difficult to model. It is upwardly concave near to the origin suggesting the presence of 
local drift. A quadratic function fitted on the coordinates accounted for 46% of the 
variation. However, when the variogram was computed afresh on the residuals from 
the quadratic trend its shape remained the same. Therefore, the analysis was done on 
the raw data. The best fitting models were the circular and the stable exponential 
function. The latter aims to avoid the disadvantages of the Gaussian model. Visually 
the range of spatial dependence appears to be a little less than 199m as indicated by 
the circular model. The range for the stable exponential model is not sensible. 
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Figure 2. Class 10: a) pixel values of NIR, b) histogram, c) experimental variogram 
(symbols) circular variogram model, (line), d) experimental variogram (symbols) 
stable exponential variogram model. 



Class 20 
Figure 3a shows the NIR values plotted as a pixel map for class 20. It seems that this 
class might comprise a clearing between a valley and spur. The NIR values are in the 
upper part of the range. As before the pixels are 20 m x 20 m Figure 3c shows the 
experimental variogram and Figure 3d the fitted circular model. It. has a range of 
spatial dependence similar to that for class 10. The sill variance, however, is much 
smaller showing the effects of the smaller maximum reflectance values and smaller 
degree of variation present. 
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Figure 3. Class 20: a) pixel values of NIR, b) histogram c) experimental variogram 
(symbols), d) experimental variogram (symbols) circular variogram model (line). 



Class 30 
Figure 4a of the pixel values shows that this class has a markedly patchy variation. It 
is largely an upland area, but possibly with small patches or lower lying areas within 
it. The NIR values are intermediate to large. The best fitting model was a nested 
spherical one with a short-range structure of about 68 m and a long-range structure of 
about 175 m. The latter is similar to the ranges for classes 10 and 20. This class is 
distinct from all of the others in having this nested variation which is typical of the 
whole image, but with larger ranges. 
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Figure 4. Class 30: a) pixel values of NIR, b) histogram, c) experimental variogram 
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Class 40 
Class 40 appears to be the most uniform (Figure 5a), however, its coefficient of 
variation is larger than for class 20. The NIR values are in the small to intermediate 
range. It is an upland area that appears to have been cleared of woodland. The 
variogram has the smallest sill variance, which supports the visual impression gained 
from this class. The variogram was fitted best by a pentaspherical model. Although 
the variation appeared to be the least, the variogram of this class has the shortest range 
of spatial dependence of all variograms, Table 2. 
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Figure 5. Class 40: a) pixel values of NIR, b) histogram, c) experimental variogram 
(symbols), d) experimental variogram (symbols) pentaspherical variogram model 
(line). 



Class 50 
This class also appears similar visually (Figure 6a) to class 60, although it is slightly 
more variable. They are both in valley locations. The NIR values are in the upper 
range. The sill variance of the variogram is relatively large and the range of spatial 
dependence is different from all other classes. It is intermediate at 117 m. 
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Figure 6. Class 50: a) pixel values of NIR, b) histogram, c) experimental variogram 
(symbols), d) experimental variogram (symbols) circular variogram model (line). 



Class 60 
Figure 7a shows the pixel values for class 60, which are in a similar range to those for 
class 50. It is a valley location. The variogram has an intermediate sill variance, which 
is similar to that for class 50. Its range of spatial dependence of 103 m is the second 
smallest. Therefore, although the pixel values are similar to class 50 the texture in the 
image defined by the range is different. 
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Figure 7. Class 60: a) pixel values of NIR, b) histogram, c) experimental variogram 
(symbols), d) experimental variogram (symbols) circular variogram model (line). 



Class 70 
Figure 8a shows the pixel map of NIR values, which are small to intermediate and 
similar to those of class 40. This class is in an upland area and there might be some 
unwooded area that give rise to the evident patchiness in the spatial distribution of 
NIR values. The variogram sill is modest and of a similar order of magnitude to those 
for classes 20 and 40, which are in similar landscape positions. The variogram range 
of 139 m is intermediate and different from all of the other classes. 
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Table 2: Model parameters for the functions fitted to the experimental variograms of 
the six spectral classes for Fort A. P. Hill. 

Class 

Model parameter 

Nugget      Sill       (1)    Sill       (2)   Range 1        Range 2        Exponent 
Model type      variance    variance       variance (m) (m) 

Class 10 Circular 0 163.3 
''', Stable 

exponential 0 165.1 
Class 20 Circular 0 20.13 
Class 30 Double 

spherical 0.1479 32.05 
Class 40 Penta- 

spherical 3.288 12.36 
Class 50 Circular 0 95.31 
Class«) Circular 0 74.46 
Class 70 Penta- 

spherieal 3.714 22.03 

33.25 

199.0 

309.9 
180.9 

67.92 

90.86 
117.4 
102.6 

139.4 

1.973 

175.6 

Summary of analysis of classes 

The variogram ranges identified for these classes relate to ones already described for 
the SPOT image and the 1-m CAMIS imagery. The short-range component of the 
variation identified in the SPOT image was 130 m, which relates to the variation 
described by class 70. The long-range component of 420 m was not present in any 
class which is as expected. The long-range component in the SPOT image represents 
the main physiographic elements and associated differences in ground cover. The 
short-range component identified in the variogram of class 30 of about 68 m was 
identified in the NIR waveband of the 1 in 15 selection from the 1-m imagery of 75 m 
for the average variogram (see Table 12 report N68171-97-C-9029). The group of 
ranges of about 100 m and 190 m were also detected in the 1 -m imagery. 

The results suggest that parts of the image associated with particular types of ground 
cover have a texture that can be described by the variogram ranges and the sill 
variances. Classes 30, 50 and 70 are different from each other and the other classes in 
terms of their sill variances and ranges of the variogram models. Classes 10 and 20 
have similar ranges but very different variances; classes 40 and 60 have similar 
ranges, but again very different sill variances, reflectance values and they are in 
different landscape positions. Classes 50 and 60 have fairly similar variograms and 
reflectance values, but the variogram ranges are different. Classes 40 and 70 have 
similar nuggetsill ratios, similar reflectance values and landscape attributes. 
Nevertheless it seems that each of these classes can be distinguished from other 
classes either in terms of the variogram range or the sill variance. 
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PART III   ANALYSIS OF HYPERSPECTRAL IMAGERY FROM FORT 
HOOD AND FORT A. P. HILL 

The aims of this investigation were to examine the spectra of individual pixels from 
different types of ground cover to assess their similarity or otherwise, and to 
determine whether their variograms were distinctive. In addition a principal 
component analysis was done together with non-hierarchical classifications using the 
spectral values and the principal component scores. Spectral information from Fort 
Hood and Fort A. P. Hill were examined. 

Fort Hood spectra 

Pixels from a Hydice hyperspectral image of Fort Hood (Texas) near to Clean were 
selected according to different types of ground cover comprising different types of 
vegetation, asphalt and soil. The image is shown in Figure 9a. The 3 m x 3 m pixels 
in each of the six groups were contiguous and relate to the areas marked by the 
arrows. Figure 9b shows the relative sizes of the classes of pixels and their locations. 

Mixed herbaceous 
vegetation 

Disturbed soil 

Grass 

Figure 9. a) Colour image of part of Fort Hood and b) the locations and sizes of the 
classes of pixels. 

There were 132 wavelength values (nm) in each spectrum and a total of 329 pixels. 
Table 3 gives the number of sites in each class and the associated ground cover class. 
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Table 3: Classes of different ground cover type and number of pixels in each for Fort 
Hood. 

Class Type of ground 
cover 

Number of 
pixels 

Pixel range 

1 Grass 70 1- 70 
2 Trees 92 71-162 

3 Asphalt 66 163-228 

4 Bare soil 21 229 - 249 
5 Mixed herbaceous 

vegetation 
38 250 - 287 

6 Disturbed soil 42 288 - 329 

The spectrum for each pixel was plotted as a trace and examined for differences and 
similarities. Experimental variograms were computed from the spectra for each pixel. 
The full set of spectra and variograms can be provided, but to simplify interpretation 
we focus on selected ones with particular properties. This selection was based on the 
form of the spectrum and its variogram. This part of the investigation was done 
without reference to the classes of ground cover in case there were differences in the 
spectra for a given classes which might be overlooked by focusing on the classes 
only. 

Spectra 

The selected spectra for the six ground cover classes are shown in Figures 12 to 84. 
Some spectra have distinctly different forms, while others vary in the finer detail or in 
their maximum reflectance values. 

A visual inspection of the spectra suggested the following similarities and differences 
for Fort Hood. The lists marked by G are spectra belonging to a pure and distinctive 
group, those marked by •& are similar although they belong to different ground cover 
classes. 
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Pixels: 
G      1-70       (Class 1) 

71-82 
f       83 - 84, 86 - 89, 94, 96 - 98, 103, 105 - 107, 112 - 113, 115 - 119, 121 - 125, 

•frj 125-130, 
146-152,156,158-160,162. 
250 - 264, 266 - 271, 273 - 283, 285 - 287, 265, 272, 284. (Class 5) 
85, 93, 102. 
90,111. 
91-92,99-101 
95 
104, 108 - 110, 114, 120, 124,143 - 145, 153 - 155, 157, 161. 
131-133 
134-139 
140 
141 - 142 

G   163-228     (Class 3) 
G   229-249     (Class 4) 
G   288-325,328-329    (Class 6) 

326 - 327 

> 

J 

(Class 2) 

Variography 

All of the experimental variograms showed evidence of trend with an upwardly 
concave slope near to the origin. Linear and quadratic functions were fitted to the 
wavelengths (one dimension only). In general the quadratic function accounted for 
more of the variance in the data than the linear one (see Table 4 for a summary of the 
trend analysis for the selected pixels). The percentage variance accounted for ranged 
from 20.9% for pixel 105 to 81.9% for pixel 25. The variograms of selected spectra 
were computed on the residuals from the trend - Table 4 describes whether the 
residuals from the linear or quadratic trend or the raw data were used. All of these 
variograms are periodic. The periodic function on its own and combined with other 
functions such as power, exponential and stable exponential functions were 
programmed in GenStat for this analysis. The stable exponential enables a concave 
shape near to the origin to be fitted satisfactorily. The program is given in Appendix I. 

The simple periodic function is given by: 

y{h) = c, cos 
(2nti 

CO 

rl7th 

y   (O 

where CO is the wavelength, c\ is the amplitude and C2 is the phase. This model is valid 
in one dimension only, which means that we can apply it satisfactorily to the spectra. 
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The periodic with power function (PPF) is given by: 

y{h)-wha + c, cos 
(2nh\ 

CO 

f2nh^ 

\ (°  J 

where w is the intensity of variation, and a is the exponent which describes the 
curvature. 

The periodic function combined with an exponential one (PEF) is given by: 

y(h) = 1 - exp<{ — \ + c, cos 
(2nh^ 

\ a J 
+ c2 sm 

(iKh^ 

\ °>   I 

where r is the distance parameter of the exponential function. 

Finally the periodic function combined with a stable exponential one (PES) is given 
by: 

\-ha\ 
y(/z) = l-exp ——  +c,cos 

f2nh^ 

\ a  J 

ClKh^ 

\ a  J 

where a is the exponent. This model takes account of an upwardly concave slope in 
the experimental variogram near to the origin. 

This suite of models was fitted each time and the function with the smallest residual 
sum of squares was selected. The one that fitted the most commonly was the periodic 
combined with a power function. Table 4 gives a summary of the variogram analysis, 
the data used, the type of model fitted and the model parameters. 

Although all variograms showed evidence of trend and periodicity - there are still 
several different forms. For example some have a longer wavelength than others, 
others continue to increase while some flatten, some have larger variances and 
amplitudes. The variograms for pixels 1 and 25 are similar (as are their spectra), 
Figures 12a and 13a, but the amplitudes of the fitted models are different, Figures 12c 
and 13c. This also applies to pixels 71 and 85, Figures 15 and 22, respectively, where 
the amplitudes and variances are quite different, which, reflect the differences in the 
spectra. Their variograms have similar shapes, however. Pixels 82 and 108, Figures 
21c and 30c, have variograms with similar wavelengths, but very different amplitudes 
(Table 4), which are reflected in the differences in their spectra, Figures 21a and 30a. 
The variograms of pixels 1 and 95, Figures 12c and 25c, are different in form; the 
former has a longer wavelength, but both have similar amplitudes (Table 4). Pixel 
163, Figure 50 b and c, has a very different variogram from all of the others. That 
computed on the residuals has a single large peak and is fitted by a simple periodic 
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function with a shorter wavelength than those above. Pixel 230 has a distinctive 
variogram with a long wavelength of about 735 nm and a small amplitude, Figure 65 
c and Table 4. Pixel 250 has a similar variogram and spectrum to of pixel 82, Figures 
68 and 21, respectively. Pixel 266, Figure 73, has a variogram with a similar 
wavelength to that of 272, Figure 76, but their amplitudes are different and there are 
subtle differences in their spectra. The variograms of pixels 288 and 317, Figures 81 
and 83, respectively, have similar wavelengths, but different amplitudes which are 
reflected by small differences in their spectra. Pixels 323 and 327 have some 
differences in their spectra, although they are similar and this is reflected by the 
different wavelengths of the variograms (Figures 84 and 85, and Table 4). The 
wavelength for the former is 776 nm and the latter 254 nm, Figures 84 and 85. 

Visual appraisal of ground cover class spectra and variograms 

The spectra and variograms for classes 1, 4, 5 and 6 are distinctive. There are small 
differences within these classes that are evident in both differences in the spectra and 
the variogram model parameters. The spectra of class 2 are more heterogeneous. The 
overall shapes of the spectra are similar - differences relate to different reflectance 
maxima and subtle differences in the sharpness of the peaks in the central section. 
Class 5 has similar spectra to some of those in class 2 - see the list above. 

Multivariate analysis of Fort Hood spectra 

Principal component analysis 

A principal components analysis was done using all of the pixels and the spectral 
values. Table 5 gives the latent roots and vectors of the first three principal 
components, which account for 99.5% of the variance. Eigenvector values greater 
than 0.1 are in bold. For PC 1 these are for wavebands 22 to 34, and 45. For PC 2 
they are 6, 48 to 49, 50 to 57, 60 to 79, and for PC 3 1 to 4, 6 to 12, 49 to 57 and 82 to 
100. Figure 10 shows the pixels plotted in the projection of PCI and PC 2, using the 
PC scores. There are four well-defined and coherent groups, 1, 3, 4 and 6 which 
accords with the visual observations of the spectra and the variograms. Class 4 is the 
most distinct and this has spectra with large average reflectance values - these relate 
to the bare ground class cover. Class 2 is diffuse and merges with class 5, which again 
was apparent from the visual appraisal. Classes 2 and 5 have a larger extent on axis 2 
than on axis 1, although both have larger extents on PC 1 than any other class. 
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Principal component 1 

Figure 10. Plot of individual pixels in the projection of principal components 1 and 2 
using the PC scores. The ground cover classes are shown near to the relevant 
group of pixels, and the line shows the approximate separation between 
classes 2 and 5. 

Non-hierarchical fc-means dynamic clustering 

This is an alternative approach to classification compared with the more commonly 
used hierarchical methods. Webster and Oliver (1990) describe the method. Non- 
hierarchical classification is also known as dynamic clustering. The population is 
subdivided at a single level into as many classes as desired. The approach subdivides 
a set of individuals into two or more disjoint groups. Each individual belongs to one, 
and only one, group. The general aim is to subdivide the population optimally such 
that there is minimum variation within the classes and the difference between them is 
maximised. 
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A mathematical criterion is chosen as a basis for optimising the subdivision, such as 
the within groups sums of squares or Wilks' criterion (L) to measure the dispersion 
within groups, or Trace W_1B to measure the separation between groups. The 
population can be divided into an arbitrary number of groups at the outset or the 
number could be based on information from another analysis. The test criterion is 
calculated, and individuals are then moved from group to group and the criterion 
recalculated. If the change improves the criterion the move is retained, otherwise it is 
not. There are different ways of moving individuals from group to group in an 
iterative way to try to obtain an optimum (Webster and Oliver, 1990). In general, the 
optimal number of groups to subdivide the population into is unlikely to be known, 
therefore more groups than are likely are chosen at first. The number of groups can 
then be reduced one at a time by fusing the' two most similar groups and recalculating 
the criterion. Individuals are then moved as before. 

Non-hierarchical classification has an additional advantage compared with the 
hierarchical ones in that once individuals are assigned to groups they can still be 
moved. This means that as the groups change character as individuals are removed or 
added others can be moved to optimise the criterion. Once an individual is grouped in 
a hierarchical method it is irrevocable. 

One of the difficulties with non-hierarchical methods is that it is sometimes difficult 
to decide how many groups is optimal. Groups tend to be of a similar size and shape, 
and weak clusters might not be isolated as distinct classes. There is a solution to this 
that uses Wilks' criterion, L, and g2L is plotted against g, where g, is the number of 
classes. 

I applied this method clustering to the pixels from the Fort Hood image. There were 
too may wavebands for the method to work successfully - the large number caused 
instability in the matrices. Therefore, I did the analysis on the scores of the first three 
principal components, and on 50% and 25% of the wavebands. The sums of squares 
criterion provided the most stable results. Starting with 10 groups, the pixels were 
reclassified until three groups remained. It was not possible to calculate Wilks' 
criterion, therefore I plotted the sums of squares criterion against g for each data set. 
Figure 11 shows the results for the three data sets. The most likely number of groups 
is shown where the graph goes below the general trend. Based on this the analyses 
using the raw spectra suggest that five groups is optimal, whereas for the PC scores 6 
groups is optimal. Figure 10 of the scores plotted in the plane of components 1 and 2 
shows five separate groups. Nevertheless, it is evident that groups 2 and 5 although 
part of a continuum, do occupy distinctive parts of this projection. 

Table 6 gives the classes to which each pixel belongs for the three sets of data. For the 
66 wavebands both the 5-group and 6-group classifications are given for comparison 
with the six classes from the PC A scores. There are minor differences between the six 
classes for the raw data and the PC scores in ground cover class 2. The bold lines 
show the limit of each of the six ground cover classes. The comparison below uses the 
results of the optimal classifications for the raw data with 66 bands (5 groups) and the 
PC scores (6 groups). 
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Figure 11   Sum of squares criterion x g plotted against g (number of groups) for: 
a) 33 wavebands, b) 66 wavebands, and c) the scores of the first five principal 
components. 
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Class 1 pixels 

For class 1 the classification results for the three analyses show that the 70 pixels 
belong to the same group. The group is pure and this reflects the homogeneity of the 
spectra and the variograms from a visual appraisal. The largest reflectance values in 
this class are about 300 nm. The ground cover for this class is grass. 

The variograms of the raw data are markedly concave near to the origin. Figures 12b 
and 13b of the raw variograms of pixels 1 and 25 show that they are similar. The 
variograms were computed again from the quadratic residuals, Figures 12c and 13 c 
for pixels 1 and 25, again they are very similar. They were fitted best by a periodic 
with power function (PPF) and they have a wavelength of about 500 nm, and 
amplitudes between 600 and just over 1000. Table 4 gives the parameters of the best 
fitting models. 

Class 2 pixels 

This is the largest class with 92 individuals and the ground cover comprises trees 
interspersed with herbaceous ground cover plants. It does not appear to be the kind of 
dense woodland that occurs at Fort A. P. Hill. The spectra for this ground cover class 
are very different in shape from those of class 1, Figures 15a and 48a. The 
classification in all cases shows that this is a heterogeneous group. For both the raw 
data and the PC scores the class comprises three groups from the non-hierarchical 
classification, but there are differences between them. For the raw data the class 
comprises mainly groups 3 (26 pixels) and 4 (59 pixels), with only seven pixels 
belonging to group 5. The pixels of the latter group are scattered within the class. 
Those for groups 3 and 4 are similar in shape, but the reflectance values for group 3 
are larger (a maximum of over 400, compared with about 300 for group 4). The 
spectra for group 5 also have a similar shape to groups 3 and 4, but their reflectance 
values are much smaller, i.e. reaching a maximum of about 130. The six-group 
classification using PC scores has 6 pixels only in group 3; these have spectra with the 
largest reflectance values in this ground cover class. There are 47 pixels in group 4 
(more or less equivalent to group 3 for the raw data with 5 groups) and 39 in group 5 
(more or less equivalent to group 4 for the raw data with 5 groups). The six-group 
classifications for the raw data and the PC scores are similar. 

The experimental variograms of the raw data are distinctively different from those of 
class 1, Figures 15b to 48b. The variograms were recomputed on the residuals and 
modelled by the periodic with power function. The model parameters for selected 
pixels are given in Table 4. All of the models have wavelengths of between 465 nm 
and 476 nm. Pixels 107 and 140 belong to group 3 for the raw data and the PC A 
scores. They have the largest amplitudes of the variograms in this class - over 5555, 
Figures 29 and 40. Pixels 71, 77 and 82, Figures 15, 17 and 21, respectively, belong to 
group 3 for the raw data and 4 for the PC scores. They have large amplitudes of 
between 3669 and 4881. Pixels 85 and 128 (Figures 22 and 36) belong to group 4 for 
the raw data and the PC scores. Their amplitudes are intermediate with values of 
about 2600. Pixels 90, 91 and 162 (Figures 23, 24 and 48) belong to group 4 for the 
raw data and group 6 for the PC scores. They have a small amplitude of between 1090 
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and 2197. Finally pixel 104 belongs to group5 for both the raw data and PC scores - it 
has the smallest amplitude. Nevertheless the variograms have a consistent form. The 
differences in the amplitudes of the periodic component of the fitted models reinforce 
the fact that this group has differences in the magnitude of the reflectances. 

The complexity of this ground cover class is not surprising because trees result in 
variable reflectances associated with the shadows created by their crowns and their 
different heights and extents. In the 1-metre imagery described in Appendix (II - the 
paper submitted to the International Journal of Remote Sensing) these effects could be 
seen as 'pock-marks'. 

Class 3 pixels 

The spectra of this class are very different from the previous classes. They are flatter, 
and the reflectance increases gradually from the small wavelengths to the longer ones 
where they become more bulbous in shape. The spectra have small maximum 
reflectance values of about 130. The class is well defined visually and in the 
classifications. The six-group classifications for both the raw data and the PC scores 
distinguish the class from pixels in class 2, whereas the five-group classification of he 
raw data links these pixels with the low reflectance pixels (group 5) in class 2. This 
ground cover class is asphalt and there should be no overlap with class 2 spectra. The 
group 5 pixels in class 2 do not have a similar shape to the spectra of this class; they 
simply have small maximum reflectance values. This suggests that the optimal 
classification into six groups based on the PC scores is more powerful in terms of 
discrimination than that using the raw data. 

This group could also be discriminated on the basis that a linear trend accounted for 
most of the variance in the data (81.6% to 89%), whereas for the majority of the 
spectra most of the variance was accounted for by a quadratic function. The 
experimental variograms of the raw data and those computed from the linear residuals 
are different from those for classes 1 and 2. The variograms of the residuals are a 
single peak and were fitted best by a simple periodic function. Figures 49 to 64 shows 
a selection and Table 4 gives the model parameters. They have a wavelength of about 
350 nm, and a small amplitude of about 20. 

Class 4 pixels 

This class is well defined both visually and by the classifications. It is pure and clearly 
discriminated. The ground cover is bare soil and the maximum reflectance values are 
large, close to 500. The spectra have an overall bulbous shape with less defined peaks 
and troughs than many of the other spectra. 

The variograms were computed from the quadratic residuals. Figures 65 and 66 
(pixels 230 and 234) show that the wavelengths are close to 700 nm and the 
amplitudes are small, about 150. For pixel 242, Figure 67 and Table 4, the wavelength 
is smaller - about 450 nm. 
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Class 5 pixels 

This ground cover class is mixed herbaceous vegetation. The spectra have a similar 
general shape to those of class 2. For the five-group classification this class overlaps 
with the 26 pixels in group 3, i.e. the ones with the larger reflectance values. For the 
six-group classification the overlap is much less - for the PC scores it is with six 
pixels only. This latter seems more reasonable in that it is likely that there are 
herbaceous plants between the trees in places in class 2. These results support the 
statement above that the classification using the PC scores is more discriminatory. 

The variograms of this class were computed on the quadratic residuals. The 
wavelengths of the periodic with power functions are about 470 nm, which is close to 
those for class 2 for which the spectra are also similar. The raw variograms and those 
on the residuals have a similar shapes also, Figures 68 to 80, The amplitudes of these 
functions are large, up to 12 OOOnm, Table 4. However, there is a considerable range 
in amplitude from 2993 (pixel 159) to 12 487 (pixel 284). The pixels belong to group 
3 for both the raw data and PC scores and have similar properties to pixels in this 
group for class 2. This ground cover class has the largest amplitudes for the 
variogram models. 

Class 6 pixels 

This groundcover class is disturbed soil, but it is a well-defined group using the raw 
data and PC scores. Visually these spectra are also different, yet the classifications 
indicate an overlap with class 1. The spectra in these classes have similar peaks and 
troughs, but they are less defined and have smaller maximum reflectance values. 

This ground cover class has distinctive variograms, as well as distinctive spectra, 
Figures 82 to 85. The experimental variograms of the raw data have a marked 
unbounded form. A quadratic trend accounted for a larger percentage of the variance 
than for any other class. Variograms were computed on the residuals from this trend. 
The best fitting model was also different from the other classes, being a periodic with 
exponential function in the main. The wavelength is about 300 nm on average, which 
is smaller than those for the other classes. The amplitude is also the smallest being 
about 50 on average. Table 4 gives the model parameters of the variograms. Figures 
81 to 85 show selected variograms from the raw data and the quadratic residuals. 

22 



Summary of results 

For ground cover classes 1, 3, 4 and 6 the results show a clear distinction between 
them in terms of their spectra. They occupy well-defined parts of the property space 
in the projection of the first two principal components. A comparison of the 
classification results using the raw data and the PC scores suggest that the PC score 
enable a better discrimination between the spectra. However, for the 5-group 
classification using the raw data and the 6-groups classification using the PC scores 
(the optimal classifications) classes 1 (grass) and 6 (disturbed soil), which have 
different spectra, have been placed in the same multivariate group as each other by 
both classifications. Since the PC scores provided the basis for good discrimination, 
they were classified into 7 groups to see whether there was any explanation for the 
overlap between classes 1 and 6. At the 7-group level class 6 is now distinct from 
class 1. All of the other classes remain similar. It seems that the variation in the 
spectra of class 2 is greater than that between classes 1 and 6. Therefore, caution is 
required in taking the prescribed route through the analysis. The other puzzle is the 
overlap between classes 2 and 5 which possibly relates to the fact that there is ground 
vegetation between the trees. 

In spite of some anomalies the analyses suggest that a combination of visual 
inspection, multivariate classification and ordination, and variography enable us to 
distinguish between different kinds of ground cover class in terms of their 
hyperspectral information. The spectra of classes 1,3,4 and 6 were clearly different. 
The complexity of class 2 spectra can probably be explained by the texture in the 
pixels arising from different tree heights, extents and proximity, with areas of ground 
cover vegetation interspersed and showing through in parts. 
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Figure 12. Ft Hood: pixel 1: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 13. Ft Hood: pixel 25: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PES) of quadratic residuals. 
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Figure 14 . Ft Hood: pixel 50: a) spectrum, b) experimental variogram of raw 
values,and c) experimental variogram of quadratic residuals. 
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Figure 15.   Ft Hood: pixel 71: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 16.       Ft Hood: pixel 76: a) spectrum, b) experimental variogram of raw 
values, and c) experimental variogram of quadratic residuals. 
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17.        Ft Hood: pixel 77: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 18.       Ft Hood: pixel 78: a) spectrum, b) experimental variogram of 
quadratic residuals. 
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Figure 19.       Ft Hood: pixel 79: a) spectrum, b) experimental variogram of quadratic 
residuals. 
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Figure 20        Ft Hood: pixel 80: a) spectrum, b) experimental variogram of quadratic 
residuals. 
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Figure 21. Ft Hood: pixel 82: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 22.       Ft Hood: pixel 85: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 23. Ft Hood: pixel 90: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Ft Hood: pixel 91: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 25. Ft Hood: pixel 95: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Ft Hood: pixel 96: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 27. Ft Hood: pixel 100: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 28. Ft Hood: pixel 104: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 

32 



a) 

b) 

Fi 

a) 

Lag distance   nm Lag, distance   nm 

>ure 29. Ft Hood: pixel 107: a) spectrum, b) variogram and fitted model (PEF) of 
raw values clipped, c) variogram and fitted model (PPF) of quadratic residuals. 
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Ft Hood: pixel 108: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Ft Hood: pixel 111: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Ft Hood: pixel 114: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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ure 33. Ft Hood: pixel 120: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Ft Hood: pixel 121: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 35. Ft Hood: pixel 124: a) spectrum, b) experimental variogram of raw values 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Figure 36. Ft Hood: pixel 128 a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 37. Ft Hood: pixel 131 a) spectrum, b) experimental variogram and fitted 

model (PPF) of quadratic residuals. 
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Figure 38. Ft Hood: pixel 134: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 39. Ft Hood: pixel 139: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Ft Hood: pixel 140: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Ft Hood: pixel 141 a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Ft Hood: pixel 142: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Ft Hood: pixel 143: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 44.        Ft Hood: pixel 140: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals, 
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Figure 45. Ft Hood: pixel 159: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Figure 46. 
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Ft Hood: pixel 160: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 47.       Ft Hood: pixel 161: a) spectrum, b) experimental variogram and fitted 

model (PPF) of quadratic residuals. 
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Figure 48. Ft Hood: pixel 162: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Figure 49. Ft Hood: pixel 163: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values, and c) as b) but clipped at 500 nm lag distance, 
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Figure 50. Ft Hood: pixel 163 a) spectrum, b) variogram and fitted model (PPF) of 
raw values, c) variogram and model (periodic) of linear residuals, clipped. 
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Ft Hood: pixel 167: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 52. 

Lag distance 

Ft Hood: pixel 168: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 53. 

a) 

Lag distance 

Ft Hood: pixel 169: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 54. 
Lag distance   nm 

Ft Hood: pixel 171: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 55.       Ft Hood: pixel 188: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 

b) 

I ,20H 
OJ 

80- 

60- 

2200 2400 

Wavelength    nm 

100 200 300 «0 500 600 700 

Lag distance   nm 

Figure 56.        Ft Hood: pixel 190: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 57.       Ft Hood: pixel 193: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values, 
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Figure 58.       Ft Hood: pixel 195: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values, and c) variogram of linear residuals. 
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Figure 59. 
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Lag distance   nm 
Ft Hood: pixel 198: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 60. 

Lag distance   nm 
Ft Hood: pixel 204: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 61. 
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Ft Hood: pixel 206: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 62. 
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Ft Hood: pixel 207: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values, c) as b) but clipped at500 nm lag distance. 
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Figure 63.        Ft Hood: pixel 213: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values, and c) variogram of linear residuals, 
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Figure 64.       Ft Hood: pixel 214: a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values. 
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Figure 65. 

a) 

Lag distance   nm 

Ft Hood: pixel 230: a) spectrum, b) experimental variogram and fitted 
model (PEF) of quadratic residuals. 
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ure 66. Ft Hood: pixel 234: a) spectrum, b) variogram and fitted model (PEF) of 
raw values, c) variogram and fitted model (PEF) of quadratic residuals. 
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Figure 67. Ft Hood: pixel 242: a) spectrum, b) experimental variogram and fitted 
model (PES) of raw values, c) experimental variogram and fitted model (PEF) 
of raw values, clipped at 500nm lag distance, d) experimental variogram and 
fitted model (PEF) of quadratic residuals and e) experimental variogram and 
fitted model (PPF) of quadratic residuals, clipped at 300 nm lag distance. 
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Figure 68. Ft Hood: pixel 250: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 69. Ft Hood: pixel 255: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Figure 70. Ft Hood: pixel 257: a) spectrum, b) experimental variogram of raw values, 

and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
a) 
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Figure 71.        Ft Hood: pixel 260: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 72. 
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Ft Hood: pixel 261: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals. 
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Figure 73. Ft Hood: pixel 266: a) spectrum, b) experimental variogram of raw values, 
and c) experimental variogram and fitted model (PPF) of quadratic residuals. 
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Figure 74.        Ft Hood: pixel 268: a) spectrum, b) experimental variogram of 
quadratic residuals. 
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Figure 75.       Ft Hood: pixel 269: a) spectrum, b) experimental variogram of 
quadratic residuals. 
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Figure 76. Ft Hood: pixel 272: a) spectrum, b) experimental variogram of raw values 
and c) experimental variogram and fitted model (PPF) of quadratic residuals, 
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Figure 77.       Ft Hood: pixel 273: a) spectrum, b) experimental variogram of 
quadratic residuals. 
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Figure 78.       Ft Hood: pixel 278: a) spectrum, b) experimental variogram of raw 
values and c) experimental variogram of quadratic residuals, 
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Figure 79.        Ft Hood: pixel 282: a) spectrum, b) experimental variogram of raw 
values and c) experimental variogram of quadratic residuals. 
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Figure 80.       Ft Hood: pixel 284: a) spectrum, b) experimental variogram and fitted 
model (PPF) of quadratic residuals 
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Figure 81. Ft Hood: pixel 288: a) spectrum, b) experimental variogram of raw values, 
c) experimental variogram and fitted model (PEF) of quadratic residuals, d) 
variogram and fitted model (PEF) of quadratic residuals clipped at 500 nm. 
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;ure 82. Ft Hood: pixel 300: a) spectrum, b) experimental variogram of raw values, 
c) experimental variogram and fitted model (PEF) of quadratic residuals, d) 
variogram and fitted model (PES) of quadratic residuals clipped at 500 nm, e) 
variogram and fitted long wavelength model (PPF) of quadratic residuals. 
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Figure 83. Ft Hood: pixel 317: a) spectrum, b) experimental variogram of raw values, 
c) experimental variogram and fitted model (PPF) of quadratic residuals, d) 
variogram and fitted model (PEF) of quadratic residuals clipped at 500 nm. 
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Ft Hood: pixel 323: a) spectrum, b) experimental variogram and fitted 
long wavelength model (PPF) of quadratic residuals. 
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Figure 85. Ft Hood: pixel 327: a) spectrum, b) experimental variogram and fitted 
model (PEF) of quadratic residuals, c) as b) fitted to long wavelength model (PEF). 
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Table 4: Summary of trend analysis and model parameters of variograms for selected pixels for 
Fort Hood 

Pixel % trend removed j Trend 

linear Quadratic! Used 

Model Fitted 

PPF PES PEF Nugget 

Model Parameters 

Sill    Distance Gradient Exponent Wavelength Amplitude Phase 

F 0 129.3 0.4205 527.6 605.6 2.747 

F 0 1808      130.6 473.7 525.1 3.090 

F 0 1194 0.4399 472.4 4881 2.358 

77 0.0 55.5     Q F 0 886.7 0.4514 470.7 3669 2.397 

F 0 821.5 0.4743 469.7 3818 2.323 

51.4     Q F 0 497.4 0.5041 465.5 2637 2.232 

51.6     Q F 0 428.8 0.5000 469.5 2197 2.281 

91 3.8 51.4     Q F 0 193.5 0.5263 467.6 1090 2.238 

57.6     Q F 0 90.74 " 0.5411 469.7 501.7 2.371 

1.7 52.4     Q F 0 375.3 0.4954 470.7 1887 2.288 

100 4.1 51.6     Q F 0 190.8 0.5240 467.1 1057 2.252 

7.2 51.5     Q F 0 48.82 0.5615 463.1 305.6 2.254 

107 
■ I 

0.2 52.3     Q 

None 

F 

F 

0 

0 

1425 

64010 

0.4626 

259.6 

471.8 

472.0 

6373 

14336 

2.331 

1.624 

108 3.7 56.3     Q F 0 82.99 0.5672 467.8 509.4 2.332 

111 1.1 53.1     Q F 0 354.2 0.4997 471.0 1794 2.301 

114 5.2 54.7     Q F 0 58.79 0.5397 466.0 331.5 2.327 

120 3.0 56.5     Q F 0 84.09 0.5860 463.7 569.9 2.269 

121 1.6 54.1     Q F 0 217.7 0.5352 465.1 1227 2.254 

124 5.6 52.4     Q F 0 87.69 0.5184 469.7 468.6 2.312 

128 0.3 53.9     Q F 0 519.1 0.4939 466.9 2621 2.773 

131 1.0 67.1     Q F 0 356.4 0.5052 475.0 1723 2.555 

134 2.2 51.1     Q F 0 535.2 0.4735 471.3 2517 2.281 

139 0.4 53.5     Q F 0 1032 0.4645 469.7 4634 2.323 

140 0.0 55.4     Q F 0 1241 0.4691 476.2 5555 2.381 

141 0.0 62.4     Q F 0 271.5 0.5555 465.9 1621 2.345 

142 0.0 58.0     Q F 0 271.3 0.5439 467.0 1587 2.305 

143 6.4 49.8     Q F 0 73.55 0.5527 465.5 460.1 2.218 

157 5.6 54.4     Q F 0 65.16 0.5997 465.8 461.6 2.228 

159 0.1 53.9     Q F 0 902.2 0.4607 467.0 3934 2.333 

160 0.3 53.6     Q F 0 290.2 0.4886 469.8 1346 2.401 

161 3.6 59.0     Q F 0 40.68 0.5993 447.6 281.5 2.173 

162 1.6 53.2     Q F 0 293.7 0.5126 465.1 1570 2.259 

163 
II 

87.7 

87.7 

88.4 None 

88.4 None 

F 

F 

0 

0 

0.1532 

0.1178 

1.0930 

1.1400 

385.2 

400.8 

20.38 

24.34 

2.199 

2.12 

164 
II 

88.7 

88.7 

89.3   Lin 

89.3 None 

Periodic 

F 

0 

0 0.098 1.1820 

330.0 

367.0 

39.15 

22.86 

2.654 

2.266 

167 86.2 87.0 None F 0 0.1983 1.0660 399.3 22.42 2.141 

[168 85.4 66.9 None F 0 0.462 0.9367 422.5 23.77 2.136 

Q    quadratic detrend 
Lin   linear detrend 

F is best fitting model 
PPF periodic with power function 
PES periodic with stable function 
PEF periodic exponential function 

L fitted model with longer wavelength 
C fitted model with shorter lag distance 
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Table 4: Summary of trend analysis and model parameters of variograms for selected pixels for 

Fort Hood (continued) 

Pixel % trend removed ; Trend Model Fitted Model Parameters 

linear quadratic! Used PPF PES PEF Nugget Sill Distance Gradient Exponent Wavelength Amplitude Phase 

F 0 0.2001 1.0480 400.3 23.16 3.145 

F 0 0.2163 1.0080 390.3 21.54 2.264 

F 0 0.0923 1.1070 385.4 18.78 2.171 

F 0 0.5801 0.8736 400.8 22.47 2.254 

F 0 0.0311 1.2780 385.6 18.15 2.113 

F 0 0.4117 0.9324 404.8 20.78 2.167 

83.8 None F 0 0.8126 0.7941 412.2 21.71 2.256 

89.2 None F 0 0.1689 1.1010 381.9 19.52 2.192 

87.6 None F 0 0.0761 1.1880 370.7 19.81 2.226 

207 84.1 84.2 None F 0 0.1049 1.0910 387.0 19.93 2.181 

II 84.1 84.2 None F 0 0.0193 1.3890 429.3 26.52 1.985 C 

82.5 83.0 None F 0 0.2171 0.9736 410.8 18.96 2.166 

87.9 88.8 None F 0 0.1531 1.1420 367.1 21.61 2.315 

60.4 97.0     Q F 0 409.8 52.89 734.6 150.7 1.855 L 

234 61.5 96.7     Q F 0 449.7 58.03 669.5 138.4 2.063 

II 61.5 96.7 None F 0 12719 348.30 373.9 1775 1.637 

242 60.8 97.7     Q F 0 336.6 39.34 411.5 65.93 1.643 

II 60.8 97.7     Q F 0 37.07 0.4111 106.1 54.13 1.892 C 

It 60.8 97.7 None F 0 15395 423.00 1.1020 367.2 1733 1.169 

ii 60.8 97.7 None F 0 7804 126.90 476.3 2860 1.649 C 

250 0.0 54.5     Q F 0 1228 0.4397 472.7 4823 2.409 

255 0.0 51.7     Q F 0 2919 0.3735 483.5 9268 2.464 

257 0.0 52.6     Q F 0 2814 0.4079 477.8 10054 2.433 

260 0.2 54.6     Q F 0 956.1 0.4575 471.2 3993 2.383 

261 0.1 55.3     Q F 0 578.8 0.4572 470.0 2420 2.398 

266 0.0 54.1     Q F 0 1984 0.4187 476.3 7277 2.436 

272 0.2 50.2     Q F 0 2885 0.4289 475.1 11555 2.326 

274 0.0 57.6     Q F 0 1315 0.4071 480.5 4497 2.555 

284 1.2 48.4     Q F 0 2848 0.4475 472.8 12487 2.268 

288 29.0 93.0     Q F 0 311.3 83.19 250.1 65.78 1.640 

II 29.0 93.0     Q F 0 325.0 100.30 349.2 52.31 2.712 C 

II 29.0 93.0     Q F 0 0.132 1.2890 759.6 198.5 1.647 L 

300 40.8 95.9     Q F 0 210.3 78.43 248.5 46.78 1.436 

II 40.8 95.9     Q F 0 213.0 81.98 1.578 274.4 37.62 1.373 C 

" 40.8 95.9     Q F 0 0.9401 0.9040 724.8 108.8 1.749 L 

317 52.3 96.9     Q F 0 148.1 53.86 269.1 37 1.748 

'   " 52.3 96.9     Q F 0 24.68 0.3342 429.2 60.6 3.122 C 

II 52.3 96.9     Q F 0 164.4 139.40 697.1 64.28 1.962 L 

323 57.2 84.7     Q F 0 0.037 1.6480 776.1 491.8 1.757 

Q     quadratic detrend 
Lin   linear detrend 

F is best fitting model 
PPF periodic with power function 
PES periodic with stable function 
PEF periodic exponential function 

L fitted model with longer wavelength 
C fitted model with shorter lag distance 
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Table 4: Summary of trend analysis and model parameters of variograms for selected pixels for 
Fort Hood (continued) 

Pixel % trend removed1 

linear quadratic! 

Trend 

Used 

Model Fitted 

PPF PES PEF 

Model Parameters 

Nuqqet    Sill    Distance Gradient Exponent Wavelength Amplitude Phase 

1.782 

1.604 

1.900 

326 
II 

II 

55.5        97.2 

55.5        97.2 

Q 

Q 

F 

F 

F 

0       147.5     59.83                                    271.6          31.56 

0       199.0    104.60                                    272.2          37.52 

0       164.8    158.80                                    758.3          65.12 

327 
II 

52.6        97.3 Q F 

F 

0       125.5     52.21                                     253.5          31.74 

0       140.3    130.10                                    673.4           47.6 

1.755 

1.972 

329 30.9        93.8 Q F 0      282.7     75.50                                    250.8          65.93 1.650 

Q     quadratic detrend 
Lin   linear detrend 

F is best fitting model 
PPF periodic with power function 
PES periodic with stable function 
PEF periodic exponential function 

L fitted model with longer wavelength 
C fitted model with shorter lag distance 
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Fort A. P. Hill 

Pixels from a hyperspectral image of Fort A. P. Hill (Virginia) were selected 
according to different types of ground cover comprising different types of vegetation, 
trees, soil and water. The image is shown in Figure 86a. The six groups of pixels were 
contiguous and relate to the areas marked by the arrows. Figure 86b shows the 
relative sizes of the classes of pixels and their locations. 

T PSS dense woodland 
??MR 
Wjyjj * j 

5 Grass lff*-&'iF 

6 ■PB|L 
Pine plantation 
woodland 

4 

* tfnHH 

• Water kirfim*1 

Ht^m** 
« 

1 

Soil with vegetation 

4 
Deciduous woodland 

Figure 86. a) Colour image of part of Fort A. P. Hill, and b) the locations and sizes 
of the classes of pixels. 

There were 126 wavelength values (nm) in each spectrum and a total of 172 pixels of 
about 3 m x 3 m. Table 7 gives the number of sites in each class and the associated 
ground cover class. 

Table 7. Classes of different ground cover type and number of pixels in each for Fort 
A. P. Hill. 

Class Type of ground 
cover 

Number       of 
pixels 

Pixel range 

1 Soil                 with 
vegetation 

43 1- 43 

2 Plantation 
woodland? 

36 44-  79 

3 Shrubs? 24 80-103 

4 Mixed woodland? 35 104-138 

5 Grass 21 139-159 

6 Water 13 160-172 
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As for Fort Hood the spectrum for each pixel was plotted as a trace and examined for 
differences and similarities. Experimental variograms were computed from the 
spectral data for each pixel. The full set of spectra and variograms can be provided, 
but to simplify interpretation we focus on selected ones with particular properties. 
This selection was based on the form of the spectrum and its variogram. This part of 
the investigation was done without reference to the classes of ground cover in case 
there were differences in the spectra for a given classes which might be overlooked by 
focusing on the classes only. 

Spectra 

Most of the spectra for Fort A. P. Hill have a similar form - the main differences 
relate to the fine detail and in particular their maximum, reflectance values. The 
spectra for class 6 (water) are distinctly different from the others and from any of the 
spectra of Fort Hood. Selected spectra are shown in Figures 89 to 115. 

A visual inspection of the spectra suggests that 1 to 159 have a similar overall shape. 
Some, such as pixel 40, Figure 91, have a larger spike at about 1300 nm than others 
such as pixel 4, Figure 90. The other main difference apart from small details in the 
shape is the average reflectance value. For class 1 the average spectral value is about 
1800, for class 2 it is about 1100, for class 3 it isl400, for class 4 which has the widest 
range in mean values for the spectrum it is about 1700, for class 5 it is about 2100, 
and for class 6 it is 160. Thus there is a considerable range in reflectance values and 
apart from class 6 it is likely to be the main basis for discrimination. 

Variography 

All of the experimental variograms showed weak evidence of trend with their 
unbounded form. Linear and quadratic functions were fitted to the wavelengths (one 
dimension only). The quadratic function accounted for more of the variance in the 
data than the linear one (see Table 8 for a summary for the selected pixels). It ranged 
from 41% for pixel 107 to 59% for pixel 160. The variograms of selected spectra were 
computed on the residuals from quadratic trend function. For pixels 1-159 they have a 
similar form. It was possible to fit a periodic function with a short wavelength as well 
as one with a longer wavelength to all of the variograms, Figure 89 for example. Most 
of the models with a short wavelength were the periodic with exponential or stable 
exponential function (PEF and PES, respectively). In general the shorter wavelength 
is about 250 nm, and the longer one varies between 520 nm to 790 nm. The latter 
were generally associated with the periodic with power function (PPF). The main 
difference between the variograms of the different classes of ground cover relates to 
the amplitudes of the fitted models. 
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Multivariate analysis of Fort A. P. Hill spectra 

Principal component analysis 

A principal components analysis was done using all of the pixels and the spectral 
values. Table 9 gives the latent roots and vectors of the first three principal 
components, which account for 96.4% of the variance. Large eigenvector values are in 
bold. For PC 1 (• 0.0975) these are for wavebands 70 to 93. For PC 2 (• 0.13) they 
are for 11 to 17, and 22 to 33, and for PC 3 (• 0.4) wavebands 63 to 65. Figure 87 
shows the pixels plotted in the projection of PCI and PC 2 using the PC scores. There 
are three well-defined and coherent groups, 1, 5 and 6. Class 6 is the most distinct and 
this has spectra with the smallest average reflectance values. Classes 2, 3 and 4 merge 
in the centre of the figure. Nevertheless, based on the PC scores, they occupy a 
distinct part of the space. 

Class 4 

Class 5 

Class 3 

<&> 

Class 2 

Class 1 
Class 6 

—i r- 

0 10 

Principal component 1 

Figure 87.   Plot of individual pixels in the projection of principal components 1 and 2 
using the PC   scores. The ground cover classes are shown near to the relevant 
group of pixels, and the lines shows the approximate separation between 
classes 2, 3 and 4. 
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Non-hierarchical fc-means dynamic clustering 

I applied this method clustering to the pixels from the Fort A. P. Hill image. There 
were too may wavebands for the method to work successfully as before. Therefore, I 
did the analysis on the scores of the first three principal components, and on 63 
(alternate) wavebands. The sums of squares criterion provided the most stable results. 
Starting with 10 groups, the pixels were reclassified until three groups remained. As it 
was not possible to calculate Wilks' criterion, I plotted the sums of squares criterion 
against g for each data set. Figure 88 shows the results for the two data sets. The most 
likely number of groups is shown where the graph goes below the general trend. 
Based on this the analysis using the raw spectra the graph suggests that four or seven 
groups is optimal, whereas for the PC scores 6 groups is optimal. Figure 87 of the 
scores plotted in the plane of components 1 and 2 shows four separate groups. 
Nevertheless, it is evident that groups 2 to 4 form a continuum in this projection. 

a) b) 

c 

0) 

O 

Figure 88   Sum of squares criterion x g2 plotted against g (number of groups) for: 
a) 63 wavebands, and b) the scores of the first five principal components 

Table 10 gives the classes to which each pixel belongs for the two sets of data. For the 
63 wavebands both the 6-group and 7-group classifications are given for comparison 
with the six classes from the PCA scores. In general the 7-group classification does 
not improve the discrimination between classes, therefore it is not discussed below in 
detail. The bold lines show the extent of each of the six ground cover classes. 
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Class 1 pixels 

Ground cover class 1 is soil with vegetation. For the PCA 6-group classification based 
on the scores it is a pure group. For the raw spectra six pixels belong to another group 
that overlaps with class 4. This class occupies a distinct part of the property space 
projection, Figure 85 It has the second largest reflectance values. Figures 89 to 91 
show the spectra for pixels 1, 4 and 40. 

The variograms of pixels 1 and 40 have a wavelength of about 250 nm for the shorter 
wavelength and over 700 nm for the longer periodic function. The amplitudes of the 
models for this class are the second largest, Table 8. 

Class 2 pixels 

This ground cover class appears to be dense pine plantation woodland. For the 
classification based on PC scores six pixels belong to group 6 and the rest to group 4 
of the multivariate classification. For the raw spectra the class is less pure having 
three groups present (six pixels belong to group 4, five to group 6 and the rest to 
group 5). Figures 92 to 99 show the spectra selected to represent this class. There is 
more variation present than in class 1. 

The wavelengths of the variogram models fitted with the longer period range between 
about 558 nm and 750 nm, Table 8. The amplitudes are intermediate in terms of the 
full data, but it is evident that as the wavelength increases so does the amplitude, 
Table 8. 

Class 3 pixels 

This is the least pure class for the classification based on PC scores. There are three 
multivariate groups in this class: six pixels belong to group 4, one to group 5 and the 
rest to group 6. For the raw spectra the distribution of classes is similar to that for the 
PC scores. In property space this ground cover class is transitional to classes 2 and 4. 
It appears to be less dense vegetation than that of class 2 - it is possibly young pine 
plantation. Figures 100 and 101 are examples of the spectra of this class. 

The variograms have been fitted by models with a short and a long wavelength, 
Figures 100 and 101. The former is about 250 nm and the longer one is 750 nm. These 
variograms have a larger amplitude than those of class 2, Table 8. 

Class 4 pixels 

This ground cover class is deciduous woodland. For the PC scores the class is almost 
pure with just two pixels belonging to another group. For the raw spectra there are 
three groups present, with 13 pixels belonging to groups other than the dominant one. 
Figures 102 to 108 are examples of spectra belonging to this group. Their overall 
shapes are similar, but the height of the peak at 1400 nm varies. 

The variograms of this class have wavelengths for the longer periodic function of 
between 522 nm and 789 nm. Their amplitudes are larger than for classes 2 and 3, 
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Table 8. The approximate wavelength of the shorter fitting periodic function is about 

250 nm. 

Class 5 pixels 

This ground cover class is grass and it is clearly distinct in the property space 
projection from all of the other classes. For the PC scores the group is pure. It is 
reasonably coherent for the raw spectra, however, the majority of pixels belong to the 
same group as the majority of pixels in class 1. There is some similarity between these 
ground cover classes in the image, Figure 1. However, the intensity of vegetation 
cover is less in class 1. 

Figures 109 and 110 are examples of the spectra for this class. The variograms in this 
class Figures 109 and 110 and Table 8 have the largest amplitudes and wavelengths of 
between 615 nm and 714 nm. There is also a shorter fitting periodic function with a 
wavelength of about 250 nm. 

Class 6 pixels 

This is the most distinctive class in terms of the raw spectra, Figureslll to 168 , and 
the variograms. It is water and the reflectance values are the smallest. The 
multivariate classifications have resulted in pure classes for both the PC scores and 
the raw spectra. 

The variograms have a large wavelength (for the longer fitting periodic function) and 
the smallest amplitude, Figures 111 to 168 and Table 8. The wavelength of the shorter 
fitting function is about 250 nm. 

Summary of results 

The classification based on the PC scores has produced more coherent and pure 
classes than that using the raw data. The spectra for Fort A. P. Hill are more similar in 
form for classes 1 to 5 than those for Fort Hood. Nevertheless the classes are 
distinguishable by multivariate classification using the PC scores. The data reduction 
to three components compared with half of the spectra clearly refines the analysis. 
The shapes of the variograms for these data are less distinctive between ground cover 
classes, but the amplitudes of the periodic functions could be used for discrimination. 
The variogram for the water is distinguishable from all of the others. 

78 



Conclusions 

This project has analysed pixel information for selected classes of ground cover in 
two ways. Part II of the report analysed a set of pixels belonging to a coherent ground 
cover class using NIR. The results show that the classes had distinguishable 
characteristics that could be identified from the structure of the variogram. The 
suggestion is that the texture of a ground cover class in an image has an identifiable 
form. 

Part III of the report describes the investigation of the hyperspectral data for 
individual pixels. The results show that certain ground cover classes have very 
distinctive spectra, for instance at Fort Hood. However when the ground cover classes 
are different kinds of trees the distinction' is less clear from the spectra alone. The 
variograms provide clues as to the differences in terms of the sizes of the variances, in 
particular. However for some classes the spectra have distinct wavelengths for the 
periodic functions. The principal component analyses have been particularly effective 
in concentrating the vital information and in so doing enable better discrimination 
between the ground cover classes in terms of the spectral values. The non-hierarchical 
multivariate classifications using the PC scores are powerful in distinguishing the 
classes. 

The results suggest that PCA with the non-hierarchical classification provides a rapid 
means of discrimination. The variograms, although distinctive for certain ground 
cover types, do not provide a rapid means of discrimination because the differences 
are often more subtle. For example at Fort A. P. Hill for classes 1 to 5 the difference 
in the variograms according to the classes was the amplitudes of the fitted periodic 
functions. 
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Figure 89. A.P. Hill: pixel 1: a) spectrum, b) experimental variogram of raw values, 
c) and d) experimental variogram and fitted models of quadratic 
residuals - short wavelength PES and long wavelength PPF, 
respectively. 
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Figure 90.   A.P. Hill: pixel 4: a) spectrum, b) experimental variogram of raw values 
and c) experimental variogram of quadratic residuals. 
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Fig ure 91. A.P. Hill: pixel 40: a) spectrum, b) and c) experimental variogram and 
fitted models of quadratic residuals - short and long wavelength PPF model. 
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Figure 92. A.P. Hill: pixel 44: a) spectrum, b) experimental variogram of raw values, 
c) experimental variogram of linear residuals, d) and e) experimental 
variogram and fitted models of quadratic residuals - short wavelength 
PEF and long wavelength PPF, respectively. 
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Figure 93. A.P. Hill: pixel 50: a) spectrum, b) & c) experimental variogram and fitted 
models of quadratic residuals - short PES and long wavelength PPF model, 
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Figure 94. A.P. Hill: pixel 54: a) spectrum, b) & c) experimental variogram and fitted 
models of quadratic residuals - short (PES) and long wavelength (PPF model). 
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Figure 95. .A.P. Hill: pixel 65: a) spectrum, b) and c) experimental variogram and 
fitted models of quadratic residuals - short PES and long wavelength PPF 
model. 
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Figure 96.   A.P. Hill: pixel 70: a) spectrum, b) experimental variogram of raw values, 

c) variogram of linear residuals and d) variogram of quadratic residuals. 
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Figure 97. A.P. Hill: pixel 75: a) spectrum, b) experimental variogram and fitted 

model of quadratic residuals (short wavelength PES model). 
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Figure 98. A.P. Hill: pixel 76: a) spectrum, b) experimental variogram of raw values, 
c) and d) variograms and fitted models of quadratic residuals - short 
wavelength PES model and long wavelength PPF model. 
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Figure 99. A.P. Hill: pixel 79: a) spectrum, b) experimental variogram of raw values, 
c) and d) variograms and fitted models of quadratic residuals - short 
wavelength PES model and long wavelength PPF model. 
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Figure 100. A.P. Hill: pixel 87 a) spectrum, b) experimental variogram of raw values, 
c) experimental variogram of linear residuals, d) and e) experimental 
variogram and fitted models of quadratic residuals - short wavelength 
PES and long wavelength PPF, respectively. 
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Figure 101. A.P. Hill: pixel 90: a) spectrum, b) and c) experimental variogram and 
fitted models of quadratic residuals - short PES and long wavelength PPF 
model. 
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a) 

ure 102. A.P. Hill: pixel 104: a) spectrum, b) and c) experimental variogram and 
fitted models of quadratic residuals - short PES and long wavelength PPF 
model. 
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Figure 103. A.P. Hill: pixel 107: a) spectrum, b) variogram of raw values, c) & d) 
variogram and fitted models of quadratic residuals - short PES and long wave PPF. 
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Figure 104. A.P. Hill: pixel 108: a) spectrum, b) experimental variogram of quadratic 
residuals, 
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Figure 105 .A. P. Hill: pixel 115: a) spectrum, b) experimental variogram of raw 
values, c) & d) experimental variogram and fitted models of quadratic 
residuals - short wavelength PEF and long wavelength PPF model. 
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Figure 107. A.P. Hill: pixel 120: a) spectrum, b) & c) experimental variogram and 
fitted models of quadratic residuals - short PES and long wavelength PPF 
model. 
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Figure 108. A.P. Hill: pixel 133 a) spectrum, b) experimental variogram of raw 
values, c) experimental variogram of linear residuals, d) & e) 
experimental variogram and fitted models of quadratic residuals - short 
wavelength PEF and long wavelength PPF, respectively. 
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Figure 109. A.P. Hill: pixel 139: a) spectrum, b) & c) experimental variogram and 
fitted models of quadratic residuals - short PEF and long wavelength PPF model, 
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Figure 110. A.P. Hill: pixel 141: a) spectrum, b) & c) variogram and fitted models of 
raw data, short PES and long PPF, d) variogram of quadratic residuals (PPF). 
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Figure 111. A.P. Hill: pixel 160 a) spectrum, b) experimental variogram and fitted 
model (PPF) of raw values c) experimental variogram and fitted model 
of linear residuals, long wavelength PPF, and d) & e) experimental 
variogram and fitted models of quadratic residuals - short wavelength 
PEF and long wavelength PPF, respectively. 
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Figure 112. A.P. Hill: pixel 165 a) spectrum, b) & c) experimental variogram and 
fitted models of raw values, short and long wavelength d) & e) 
experimental variogram and fitted models of linear residuals - short 
wavelength PEF and long wavelength PPF, respectively. 
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Figure 113. A.P. Hill: pixel 166: a) spectrum, b) experimental variogram and fitted 
models of raw data, short wavelength PPF model and c) experimental 
variogram and fitted models of linear residuals, short wavelength PEF. 

a) 

1500' 
V 
U 
C _g 
u 
S   TOO- 

<u 
Q: 

500- 

1200 1400 1600 

Wavelength   nm 
laoo 2000 2200 2400 

b) c) 
10000D- 

x              *      " 
x                                     x 

ÖQOO0- 

50000- 

x                         xxx 

x     - 
X 

X                                                                                          x 

"   x   x   x         X      -         * 
4000D- 

20000- 

D- 

Xx 

9000D 

8O0OD 

70000- 

BOOOD 

50000 

4O0O0- 

30000 

20001] 

1O0O0- 

100 200 300 «30 500 600 70U 100 200 300 400 500 600 700 

Figure 114. A.P. Hill: pixel 167: a) spectrum, b) experimental variogram of raw data 
c) experimental variogram of linear residuals. 
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Figure 115. A.P. Hill: pixel 168: a) spectrum, b) & c) experimental variogram and 
fitted models (PPF) of raw values, short and long wavelength d) & e) 
experimental variogram and fitted models of linear residuals - short 
wavelength PES and long wavelength PPF, respectively. 
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Table 8: Summary of trend analysis and model parameters of variograms for selected pixels for Fort 

A.P. Hill 

Pixel % trend removed ! Trend Model Fitted Model Parameters 

linear quadratic! Used PPF PES PEF Nugget Sill Distance Gradient Exponent Wavelength Amplitude Phase 

1 9.2 52.3 Q F 0 1.2E+06 239.6 248.3 96874 2.197 

ii 9.2 52.3 O F 0 6095 0.8349 726.1 195679 1.911 L 

40 9.9 48.6 Q F 0 69229 0.4522 244.1 114515 2.229 

11 9.9 48.6 O F 0 3552 0.9490 783.4 307081 1.491 L 

44 20.0 42.3 Q F 0 1.1E+06 389.8 250.1 51297 2.574 

II 20.0 42.3 O F 0 10679 0.6948 558.5 50849 3.103 L 

50 21.4 40.6 Q F 0 1.0E+06 313.9 1.2630 249.6 46023 2.620 

II 21.4 40.6 O F 0 , 6392 0.7865 693.7 69732 2.819 L 

54 20.9 43.1 Q F 0 1.2E+06 344.2 1.1720 245.0 52823 2.267 

II 20.9 43.1 O F 0 7959 " 0.7668 629.0 66375 3.075 L 

65 19.8 41.1 Q F 0 9.1E+05 327.4 1.1590 249.4 42694 2.562 

II 19.8 41.1 O F 0 4399 0.8243 744.3 72047 2.349 L 

75 19.1 40.8 Q F 0 1.8E+06 905.2 0.7433 244.7 57908 2.392 

76 20.8 40.9 Q F 0 1.1E+06 324.3 1.2100 250.2 49225 2.599 
II 20.8 40.9 Q F 0 6387 0.7918 700.7 72066 2.689 L 

79 21.3 40.2 Q F 0 1.2E+06 313.3 1.2550 249.5 50889 2.659 
II 21.3 40.2 Q F 0 6351 0.8069 748.2 86600 2.562 L 

87 18.9 41.6 Q F 0 1.7E+06 308.4 1.2040 248.9 75989 2.538 
II 18.9 41.6 Q F 0 8137 0.8317 750.0 152570 2.355 L 

90 20.5 42.0 Q F 0 1.1E+06 326.4 1.1530 247.7 49035 2.453 
II 20.5 42.0 Q F 0 4657 0.8408 750.8 91291 2.287 L 

104 16.4 42.9 Q F 0 2.0E+06 301.0 1.1680 248.2 94916 2.493 
II 16.4 42.9 Q F 0 10754 0.8120 733.6 181498 2.347 L 

107 19.8 40.8 Q F 0 1.2E+06 308.6 1.2530 248.8 54333 2.624 
II 19.8 40.8 Q F 0 5839 0.8323 789.1 106535 2.366 L 

115 19.3 43.6 Q F 0 2.6E+06 372.5 250.2 119159 2.619 
II 19.3 43.6 Q F 0 30773 0.6661 521.9 129584 2.921 L 

119 16.7 42.1 Q F 0 2.7E+06 295.3 1.2160 248.5 121633 2.558 
II 16.7 42.1 Q F 0 14801 0.8100 743.8 242183 2.400 L 

120 17.0 41.9 Q F 0 2.8E+06 295.9 1.1990 247.4 126810 2.493 
11 17.0 41.9 Q F 0 15870 0.8081 725.4 258755 2.421 L 

133. 17.9 41.8 Q F 0 2.4E+06 420.5 239.7 89353 2.085 
■1 17.9 41.8 Q F 0 16544 0.7444 613.2 122421 3.009 L 

139 12.6 46.9 Q F 0 2.2E+06 258.2 243.8 146716 2.075 
II 12.6 46.9 Q F 0 10405 0.8425 714.0 340547 1.993 L 

141 12.1 44.8 Q F 0 15438 0.7878 698.8 336947 2.089 L 

" 12.1 44.8 None F 0 3.3E+06 287.7 1.3160 259.6 144847 3.011 
II 12.1 44.8 None F 0 29940 0.7338 615.5 232984 3.029 L 

160 59.1 58.9 Q F 0 1.2E+04 53.6 275.7 1983 1.894 
II 59.1 58.9 Q F 0 342.4 0.6043 757.5 5253 1.210 L 
II 59.1 58.9 Lin F 0 1.2E+04 53.9 275.9 1989 1.890 
11 59.1 58.9 Lin F 0 325.6 0.6130 758.2 5293 1.203 L 

" 59.1 58.9 None F 0 1618 0.3777 269.8 2826 2.279 

Q    quadratic detrend 
Lin    linear detrend 

F is best fitting model 
PPF periodic with power function 
PES periodic with stable function 
PEF periodic exponential function 

L fitted model with longer wavelength 
C fitted model with shorter lag distance 
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Table 8: Summary of trend analysis and model parameters of variograms for selected pixels for Fort 
A.P. Hill (continued) 

Pixel % trend removed Trend Model Fitted Model Parameters 

linear quadratic Used PPF PES PEF Nugget Sill Distance Gradient Exponent Wavelength Amplitude Phase 

165 34.4 34.1 Lin F 0 3.0E+04 47.4 265.3 4921 2.134 
II 34.4 34.1 Lin F 0 3.0E+04 24.2 480.2 7768 3.090 
" 34.4 34.1 None F 0 3.0E+04 47.4 265.3 4921 2.134 
II 34.4 34.1 None F 0 544.2 0.6967       723.8 16742 1.371 

166 63.9 63.6 Lin F 0 1.0E+04 62.8 281.7 1719 1.576 
II 63.9 63.6 Lin F 0 308.7 0.5969       757.1 3905 1.162 
II 63.9 63.6 None F 0 752.5 0.4882       275.7 2444 1.968 

168 70.7 70.6 Lin F 0 6.7E+03 69.3 1.74        289.5 1274 1.385 
II 70.7 70.6 Lin F 0 235.7 0.57       722.6 2586 1.272 
II 70.7 70.6 None F 0 282.1 0.60       274.0 1911 2.153 
" 70.7 70.6 None F 0 2.581 1.39       800.0 4389 1.167 

Q     quadratic detrend 
Lin    linear detrend 

F is best fitting model 
PPF periodic with power function 
PES periodic with stable function 
PEF periodic exponential function 

L fitted model with longer wavelength 
C fitted model with shorter lag distance 

99 



"°§§oooo5oqoooq§qqqqqooqooooooqqNqqqo □L £ 
ddddddpppp jödddööödööödödööddöp'öp o o o o 

O 
O 

2giglgg555o8888S8888555555S55555SS8SÖ 
ddddddddddddddoddoddooodoooooooooooo 

T-oiLoioNONninuxDiDNNNossMsioioiosssqinjnNin'-tti; O CD 
0> T- C\J 

^SSSSSoooooooooooooSS5S5S55öS5Söqöoqq 
_• _■ -• _■ _■ _■ _■_■_*_;_; —.■-*'-; ^; ä «*-;«#-;#-; /-s f-N ^-» /-i r-i I-» o o Q o o o o o o o o o o ddddddddoooooooooopopppi 

,   ,   i   i   i   i   i   ■   i   i   i   i   i   i   i   i   ■   i   i   i   •   *   « 

£SS>NNNNNNNSSN  >cocooococooooocococg ><3<3(5<5<5<gro<»(g<g >>>       >>>>>>>>>>       >>>>>>>>>>       >>>>>>>^>^>^ 

^oooooooooooooooooooooooooqqqqqqqqqqqqqq 
ööööööööööööööööööööööööööööööoooaooooo 

ööööööööööööööööööööööööööööööööööööööö 

o 

.2 
'c/3 

ß 

DJ 

< 
4—1 

o 

CO i- CD 

OcM ^ Q_ 

i-saiOT-Ncofflinnw^ffiWwncootDcoiooomi-ONiDcn<th;U)'-c5 0)Ocoo)om 
nNScoBjcococoraoococomajcococooocooococomaicoarooorocBcjffifficjcnffirocjg Q-ooooooqqooooooooooooqqqqqqqqqqqqqqqqqqq 

T^cD^ooajcooT-c^m^iocDr^cocs^o^c^crj^LncDr^coqjioo^cMcrJM-cocDr^oocjcDq 
cwwSS>nnconnnnncoco >^-M--*^-^:-g:'S:"S:"S:'S: >LnLninLnioiounLOiDLn >CD 
nj>>>>        >>>>>>>>>> >>>>>>>>>>        >>>>>>>>>> > 

0) 

mcr>cr>Lnr-uiOLnc\iooi^cr)N^M-^cNcom^or^^cDinc\i^c^05mc\ig)cx)c\icDa>CN^OLn 
nonninonwininooco'tNtvico^n'-iDOOotvioicJcoO'i-iONfflDoin^inooo't-o) ^"""SooooooooiDoooooooo^oino^Noo^io^^nwNäiniii "-ooooooooooooooooooo qqqqqqqqqqqqqqqqqqqq 

ööööööööööööööööööööööööööööööööööööööö 

\— 
O 

-t—> 
o 
<D > 
ß 
CO 

'3 
e 
cd 
C/3 
O 
ß 

> 
ß 
M 

ON 

CM -=t 

St 

a. o 

°>4 c fd 
o > 

c 
CO 

°-S E ft > 
rSE 0 

(Tl 
< m 
o 
U) u. 

T-lOCJlfi^r-n(NCvlCOCOU)h".Tj'000)NLOT-a)0)ir)T-T-00)00)NC\J'i-COr-0^,N^inO 
ncocnco^ioinioinwir)WincDcocoinuouiin^^^^cocoiN^O)Na3cotO(ONcoc3)Oir3ir) 
nNNO)0)0)0)0)0)0)0)mO)NO)0>0)lli050CnO)mO)NO)0)0)COCONC\INh--NSNO)0)CO •^ooooooooooooooooooooooopooooooooooooooo 

ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ 

C   >-r-OOOOOOOOOOi-^-T--r-^-T-^--^i-i-^-T-CMCyCMCMCMOJCM'^T-i-T-t-T-i-   > 
CO >^^T-t_T-T-T-^.^-T-    >1_,_,_,_T-.r-,-1-,-,-    >1_T_^T_V_T_^    >    >    >    >    >    >    > 
_a    >>>>>>>>>>  >>>>>>>>>>  >>>>>>> 
CD > 
CO 



o 
Q. 

Ü 
D- 

O 
CL 

n in ■->-f >-") 
n  o o t- cr> ** to 

d ö d d d d 

CM  CO  CO   h-   <D *-   U"> noiioosNO 
"- o o p o o o 

d d d d d d 

rw^- i-coino 
n   o> a> CM CO CD en 
"- o o o q p o 

d d d d d d 

•o i- CM CO -<t in CO 
C  CO CO CD  CD CO CD 
CO    > > >    > > > 

JD 
CD 

CO O) CM ^- ID O O 
O CM o co co co r*. 
"- o o o o o p 

d d d d d d 

CM in o co "3- CM co 
Ü o co en co co CM 
n   oi CM n 9 t v 
u- o t- i- f- T- •»- 

d d d d d d 

O  CO  CO  00 O  CO 
OPJ   OICOOIO) 
0)CO N  N N  N o o o p p p 
d d d d d d 

T3 
CU 
3 

O 
U 

T3 O T- CM CO ■* LO 
C CM CM CM CM CM CM ffi > > > > > > 



O 

£ 

3 

< 
o 

CO u 

S 
Ö 

J3 

O 

U 

ca 
H 

iomtt!iou)U)ioiou)inioiomu)micmu)U) 

T- CM CM CM CM CM ■ 

GO CO 

s CO 

a 
o 
OH 

b CO CM CM CM CM T- 
o CO 
o CO 

"e3 CD 

O- 
o 
.3 
OH (OSNSNT- 
<D co u tl 
r! CO 

i^[s^t-^iv^r^i>^T-T-t-iv-i^.i^.r^ 

CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCNCMCMCMCOCOCOCOCO 

T-CMCMCMCMCMCMCMCMT-CMCMCMCMCMT-CMCMCMCMCMCOCOCOCOOO 

|v_iv.h-i^-iv-iv-t^N-Kiv-r--i~iCMiv-N-i~--N-r-t~-ii-N-cococococo 

OT-MO'tmcDMOCOO'-CMn'JUXDSO 
ZCMCMCMCMCMCMCMCMCNCOCOCOCOCOCOCOCOCO 

s §< 
w CL 

T3 
a ca 

X> 
> to o a. 

<6 
ro O) 
vo 
60 .s 
«1 co 
3 CO 
CO nS 
.fc CO 
Ü <o 
O, 

0)OT-CMn<tm(0N<00)Oi-NC),*m(DN00C9 
co^:'^-'^!'*,^-'^f'*'«''fl"'*inioinioU5inininuoin 

^rcDCD'^f^r'itCDCD'^CO'J'l-'*''!"'^''^"^'^'"* 

nin(0(Oiou)ioiD(Ot(DU)iDioin^iflrafio 

coiococoioiomcoco-^co'oioioio^i-ioin'irio 
co 

OT-cMcotmcoh-oocno- 
Z CO CO CD CO CD r~ " "  ' 

CDCOCDCOCDCDCDCOfCDM-COCDlOCD''3'CO'*''^COCD^t-CDCD 

(OCDCDCDCOCOCDCDlOCOlOCOCO'-COmcDlomCDCDlOCDCD 

(OCDCOCOCOCDCOCDlfiCOmcDCOT-CDlOCDmmcDCDmCDCO 

OT-Nn^u)(DNooc»gv-c\in3iggNfflcooT-N<o 
oococooocooocooooocoo)a>c35cna)0>cnco050>oooo 

CO  T o 
D. 

•T-CMCMCMCMCNCMCMCMT-CMCMCMT-CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM'I-CMCMCV'* 

■CMCMCMCMC\lCMCMCMT-CMCMCMT-CMCMCMr>-CMCMCMCMCMCMCMr--CMCMCMCM-<-CNlCNC\->r 

0^«€0*.0<DI-COa>0£N«5W»£««gSH8aa8&8885SSS88$588?S3S 5 



coocococococococo 

ci 

o 

X) u 
s 

.S 
'S o 
U 

X) 
CO 

OinCOMDOlOt-N 
ZCDCDtDcocor^f-r-- 

nmioiiimioioiiiinuiDiiiinuiminn 

co 

oinsjNoocDO^-CMO^-miDScooo 
ZOOOOOT-T-T-T-T-T--^T-T-T-CM 

ni'*,tf,<i-'<i-'*i-'*^rTt,>3-'<i"Ti-'<frco'3-<a-'i- 
o o. 

CO 

ab 

CD 

oin(DNooo)Or-cMn^incosoo)0 

Ö 
.2 
'co 

>; 
'S 
-O 
3 
CO 

ft 
3 
O 
i-< 
00 

VO 
CO 

c c CO 

.2 .o C 
'on CO CD 
'> |> c o -3 -3 ft 

=3 3 E 
w CO o 
ft ft Ü 

=3 3 "3 o O ft 
S-c ki 
00 00 'o 

i i 

'C 
CO nJ ft 

-Ö T3 CD 

§ C 
cd 

CD 

CO «J -+—» 
l-> J-. ■     . -*-» -t-» 

C/3 
1-4 o O 

CD ft CU ft W 
CO CO CD 

m c"> X 
VO *o 

00 
00 00 .s .s c 

CO 
'cO 'co 3 
3 3 c 
C a o 

.O _o "-S 
*4-* %—» CO 

S3 03 o 
o Ü s s s CO 

'on CO CO 
CO CO iS ^2 iS CD 

*o "o 
(U 

<D CD 
J3 -Ö -4-* 

+-» -*-* 
CO 

75 CO -tj 
+2 -<-; c 
C C CD 
0) CD CO 
on CO CD 
(L> Ü S-H 
t-i »M ft ft ft CD 
CD <U l-i 
fc-l i-i 

cd 
m m o 
^o VO ft 
r1- \6 VO 
00 00 00 



DRAFT 

APPENDIX I 

This is a GenStat program to fit periodic models to the variogram. This was written to 
fit models to the spectra in the preceding report. The following functions can be fitted: 

a) simple periodic, b) periodic with phase shift, c) periodic with power function, 
d) periodic with exponential function, and e) periodic with stable exponential 
function. 

A file with variogram values is appended so that the program can be tested. 

job 'variogram fitting1 

scalar al, top, bot, pi 
scalar rex, nugg, wave, cfun, sfun, grad, alpha 
calc pi=3.14159 

calc bot=0 
calc top=100 
calc top=top*(top.gt.O) 
text [nval=2] title 
text [nval=l] label 
frame window=l,2,3,4; ylower=0.20,0.12,0.32 , 0 . 52 ; \ 

yupper=0.8,0.47,0.87, 0.87; \ 
xlower=0.1,0.48,0.10,0.48; xupper=0.9,0.93,0.8,0.93 

variate [nval=201] dpar2, dparl, ypow, yper, yabs 
variate [nval=201] xlag; values=! (1. . . 201) 
variate [nval=2 01] yvar 
variate [nval=2] xdv,ydv 

calc rex=400 
calc xlag=(xlag-1.0)*rex/200 
calc xdv$[l]=0 
calc xdv$[2]=rex 

open 'testper.gra'; channel=4 ; filetype=graphics 
device 4 

open '2fthd_37n.gam' ; channel=2 
read [channel=2] title 
print title 
read [channel=2] label 
print label 
read [channel=2; setnvalues=y; skip=*] lag, gam, wt 
graph[nr=19; nc=45] gam;lag;meth=p 

print 'Model: unbounded linear' 
model [weights=wt] gam; residuals=R; fittedvalues=F 
fit lag 

print '*****   Periodic model  with phase   ****** 
print ' weights = npairs  ' 
expression periodic[1,2];  \ 
value=!e(cl = (cos(2*pi*lag/al))), \ 
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!e(c2 = (sin(2*pi*lag/al))) 
model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al; initial = 300;  upper=500; lower=50 
fitnonlinear [print=monitoring;calculation=periodic[]] cl,c2 

rkeep estimates=kest 
print kest 
calc wave=kest$[1] 
calc cfun=kest$[2] 
calc sfun=kest$[3] 
calc nugg=kest$[4] 
calc hypo=sqrt(sfun*sfun+cfun*cfun) 
calc phi=arccos(cfun/hypo) 
calc amp=cfun/cos(phi) 
print amp, phi 
calc yabs=0 
calc dpar2=2*pi*xlag/wave 
calc yper=cfun*(cos(dpar2))+sfun*(sin(dpar2)) 
calc yvar=yper+nugg 
pen 19; size=1.0 
axes window=l; pen=19; \ 

xtitle='Lag distance1; \ 
ytitle='Variance'; \ 
ylower=bot; yupper=top; xlower=0; xupper=rex; \ 
xmarks=! (0,100. . .300) ; ymarks=! (0,20 . . . 100) 

ylabels=!t('0' , '1.0', '2.0' . '3.0') " 
ylabels=!t('0' , '0.2', '0.4', '0.6', '0.8', '1.0')" 

pen 1,2; linestyle=l,0;colour=l;method=monotonic,point; \ 
symbols=0,4; thickness=2.0; size=0.7 

dgraph [window=l;keywindow=0;title='Variogram'] \ 
y=yvar,gam; x=xlag,lag; pen=l,2 

print '*****   Periodic model     ****** 
print ' weights = npairs 
expression periodic[1];  \ 
value=!e(cl = (cos(2*pi*lag/al))) 
model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al; initial = 300;  upper=500; lower=50 
fitnonlinear [print=monitoring;calculation=periodic[]] cl 
rkeep estimates=kest 
print kest 
calc wave=kest$[1] 
calc cfun=kest$[2] 
calc sfun=0 

calc nugg=kest$[3] 
calc hypo=sqrt(sfun*sfun+cfun*cfun) 
calc phi=arccos(cfun/hypo) 
calc amp=cfun/cos(phi) 
print amp, phi 
calc yabs=0 
calc dpar2=2*pi*xlag/wave 
calc yper=cfun*(cos(dpar2))+sfun*(sin(dpar2)) 
calc yvar=yper+nugg 
pen 19; size=1.0 
axes window=l; pen=19; \ 

xtitle='Lag distance'; \ 
ytitle='Variance'; \ 
ylower=bot; yupper=top; xlower=0; xupper=rex; \ 
xmarks=! (0,100. . .300) ; ymarks=! (0 , 20 . . .100) ; \ 
ylabels=!t('0.2', '0.4' , '0.6' , '0.8' , 'l.O')" 

pen 1,2; linestyle=l,0;colour=l;method=monotonic,point; \ 
symbols=0,4; thickness=2.0; size=0.7 

105 



DRAFT 

dgraph [window=l;keywindow=0;title='Variogram'] \ 
y=yvar,gam; x=xlag,lag; pen=l,2 

print '***  Periodic model with phase shift and power function 
print ' weights = npairs 
expression periodicpower[1,2,3];  \ 
value=!e(cl = (cos(2*pi*lag/al))), \ 

!e(c2 = (sin(2*pi*lag/al))), \ 
!e(c3=((lag**a2))) 

model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al,a2; initial = 400, 1.0;  upper=800,1.9; lower=5,0.1 
fitnonlinear [constant=omit;\ 

calculation=periodicpower[]] cl,c2,c3 

rkeep estimates=kest 
print kest 
calc wave=kest$[1] 
calc cfun=kest$[3] 
calc sfun=kest$[4] 
calc nugg=0 
calc grad=kest$[5] 
calc alpha=kest$[2] 

calc hypo=sgrt(sfun*sfun+cfun*cfun) 
calc phi=arccos(cfun/hypo) 
calc amp=cfun/cos(phi) 

print amp, phi, nugg, wave, grad, alpha 

calc yabs=0 
calc dpar2=2*pi*xlag/wave 
calc yper=cfun*(cos(dpar2))+sfun*(sin(dpar2)) 
calc ypow=grad*xlag**alpha 
calc yvar=nugg+ypow+yper 

pen 19; size=1.0 
axes window=l; pen=19; \ 

xtitle='Lag distance'; \ 
ytitle='Variance'; \ 
ylower=bot; yupper=top; xlower=0; xupper=rex; \ 
xmarks=! (0,100. . .700) ; ymarks=!(0 , 2000 ... 8000) 

; \ 
ylabels=!t('0', '1.0', '2.0', '3.0') 

pen 1,2; linestyle=l,0;colour=l;method=monotonic,point; \ 
symbols=0,4; thickness=2.0; size=0.7 

dgraph [window=l;keywindow=0;title='Variogram'] \ 
y=yvar,gam; x=xlag,lag; pen=l,2 

print '*****       Periodic model with phase and exponential 
function*****' 
print ' weights = npairs  ' 
expression periodicexp[1,2,3];  \ 
value=!e(cl = (cos(2*pi*lag/al))), \ 

!e(c2 = (sin(2*pi*lag/al))), \ 
!e(c3=(1.0-exp(-(lag/a2)))) 

model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al,a2; initial = 400,100;  upper=900,500; lower=5,l 
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fitnonlinear [constant=omit;calculation=periodicexp[]] \ 
cl,c2,c3 

rkeep estimates=kest 
print kest 
calc wave=kest$[1] 
calc cfun=kest$[3] 
calc sfun=kest$[4] 
calc nugg=0 
calc dist=kest$[2] 
calc sill=kest$[5] 

calc hypo=sqrt(sfun*sfun+cfun*cfun) 
calc phi=arccos(cfun/hypo) 
calc amp=cfun/cos(phi) 

print sill, dist, amp, cfun, sfun, wave 

calc yabs=0 

calc dpar2=2*pi*xlag/wave 
calc yper=cfun*(cos(dpar2))+sfun*(sin(dpar2)) 
calc dparl=xlag/dist 
calc yexp=sill*(1.0-exp(-dparl)) 

calc yvar=nugg+yexp+yper 

pen 19; size=l.0 
axes window=l; pen=19; \ 

xtitle='Lag distance1; \ 
ytitle='Variance'; \ 
ylower=bot; yupper=top; xlower=0; xupper=rex; \ 
xmarks=! (0,100. . .700) ; ymarks=!(0,1000 ... 7000) 
ylabels=!t('0', '1.0\ '2.0', '3.0')  " 

pen 1,2; linestyle=l,0;colour=l,-method=monotonic,point; \ 
symbols=0,4; thickness=2.0; size=0.7 

dgraph [window=l;keywindow=0;title='Variogram'] \ 
y=yvar,gam; x=xlag,lag; pen=l,2 

print '*** Periodic model with phase shift and stable function *** 
print ' weights = npairs 
expression periodicexpst[1,2,3];  \ 
value=!e(cl = (cos(2*pi*lag/al))), \ 

!e(c2 = (sin(2*pi*lag/al))), \ 
!e(c3=(l.0-exp(-(lag/a2)))) 

model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al,a2; initial = 400,100; upper=800,1000; lower=5,l 
fitnonlinear [constant=omit; \ 

calculation=periodicexpst[]] cl,c2,c3 

print '*** Periodic model with phase shift and stable function *** 
print ' weights = npairs  ' 
expression periodicexpst[1,2,3];  \ 
value=!e(cl = (cos(2*pi*lag/al))), \ 

!e(c2 = (sin(2*pi*lag/al))), \ 
!e(c3=(l.0-exp(-((lag**a3)/(a2**a3)))) ) 

model [weights=wt; distribution=normal] gam; fittedvalues=F 
rcycle al,a2,a3; initial = 400,100,1;  upper=800,1000,2; 
lower = 5,0.1, 0.1; \ 
step=0.1,0.1,0.01 
fitnonlinear [const=omit; \ 
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calculation=periodicexpst[]] cl,c2,c3 
rkeep estimates=kest 
print kest 
calc wave=kest$[1] 
calc cfun=kest$[4] 
calc sfun=kest$[5] 
calc nugg=0 
calc alpha=kest$[3] 
calc dist=kest$[2] 
calc sill=kest$[6] 

calc hypo=sqrt(sfun*sfun+cfun*cfun) 
calc phi=arccos(cfun/hypo) 
calc amp=cfun/cos(phi) 

print sill, dist, amp, cfun, sfun, 'wave, alpha 

calc yabs=0 

calc dpar2=2*pi*xlag/wave 
calc yper=cfun*(cos(dpar2))+sfun*(sin(dpar2)) 
calc  dparl=xlag**alpha/dist**alpha 
calc yexps=sill*(1.0-exp(-dparl)) 

calc yvar=nugg+yexps+yper 

pen 19; size=1.0 
axes window=l; pen=19; \ 

xtitle='Lag distance'; \ 
ytitle='Variance'; \ 
ylower=bot; yupper=top; xlower=0; xupper=rex; \ 
xmarks=! (0,100. . .700) ; ymarks=!(0 , 1000 ... 8000) 
ylabels=!t('0 ' , ' 1. 0 ' , '2 . 0' , ' 3 . 0 ' ) 

pen 1,2; linestyle=l,0;colour=l;method=monotonic,point; \ 
symbols=0,4; thickness=2.0; size=0.7 

dgraph [window=l;keywindow=0;title='Variogram1] \ 
y=yvar,gam; x=xlag,lag; pen=l,2 

stop 

Variogram values 

Lag[0]    Vgram[0]    Count[0]' 
1 Fort Hood 2' 

'Position 37' 

12.0        3.52       234.0 
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29.6 7.45 278.0 
49.4 14.58 249.0 
69.4 23 .31 235.0 
89.4 37 .41 208 .0 

109.5 49.72 201.0 
129.6 58.94 177 .0 
149.3 67.37 169 .0 
169.6 72.55 163 .0 
189.5 86.05 141.0 
209.3 90.44 135.0 
229.5 90.36 122.0 
249.3 74.24 108.0 
269.5 49.30 101.0 
289.6 24.11 94.0 
309.9 8.45 91.0 
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APPENDIX II 

Paper submitted to International Journal of Remote Sensing - please do not quote 
from this or use the information therein. 

Using the Variogram to Explore Imagery of Two Different Spatial Resolutions 

M. A. OLIVER1, J. A. SHINE2 and K. R. SLOCUM2 

1 Department of Soil Science, University of Reading, Whiteknights, Reading RG6 
6DW, United Kingdom. 
2United States Army Topographic Engineering Center, 7701 Telegraph Road, 
Alexandria, Virginia 22315-3864, USA 

Abstract. The resolution of remotely sensed data is becoming increasingly fine, and 
there are now many sources of data with a pixel size of 1 m x 1 m. This produces 
huge amounts of data that have to be stored, processed and transmitted. For 
environmental applications this resolution possibly provides far more data than are 
needed; data overload. This poses the question: how much is too much? We have 
explored two resolutions of data, 1-m pixel CAMIS data and 20-m pixel SPOT data, 
using the variogram of geostatistics. For both we used the normalized difference 
vegetation index (NDVI). It is clear that there is more information in the 1-m data and 
three scales of spatial variation were identified: a short scale of about 25 m, an 
intermediate one of about 150 m and a much longer one of about 600 m. We sub- 
sampled the 1-m data and identified an additional scale of variation of about 300 m. 
The latter and the short spatial scale were identified consistently until the sub-sample 
was 1 pixel in 15 for each row and column (or 1 pixel in 225). At this stage spatial 
scales of about 100 m and 600 m were described, which suggested that only now was 
there a real difference in the amount of information available. We compared the 
results of this analysis with the variogram of the SPOT data. Similar spatial scales to 
those from the sub-sampled 1-m data were identified. From this analysis it seems that 
a pixel size of 20-m is adequate for many environmental applications, and that if more 
detail is required the 1-m data could be sub-sampled to 1 pixel in 10 for every row and 
column without any serious loss of information. This reduces significantly he amount 
of data the needs to be stored, transmitted and analysed and has important 
implications for data compression. 

1. Introduction 

The applications of remotely sensed imagery are constantly increasing as are the 
capabilities for increasingly fine spatial resolution. Aerial images contain large 
amounts of information, both spatial (pixels) and spectral (wavebands) data. As the 
resolution increases this results in vastly more information: imagery with a spatial 
resolution of 1 m x 1 m per pixel contains 400 times as much data as that with a pixel 
size of 20 m x 20 m. A wide variety of satellite sensors will provide information at 
1-m or near 1-m resolution in the next few years (Aplin et al., 1997). Sensor systems 
such IKONOS (Space Imaging, Corp., panchromatic channel) and CAMIS 
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(Computerized Airborne Multispectral Imaging System) already achieve this 
resolution (Carder, 1993; Baker, 1999). Hyperspectral imagery, such as HYDICE, has 
many more wavebands than the conventional imagery of SPOT (4 bands) or Landsat 
TM (7 Bands). For example SEBASS thermal hyperspectral imagery has 128 
wavebands. With such data, if the spatial resolution is the same as that for a SPOT 
image, then there are almost 42 times more data. In this paper we consider the spatial 
resolution of the data only. 

If both the resolution and spectral information are increased then it is clear how the 
amount of information will expand. There are consequences of this for data storage, 
transfer and analysis. It is evident that 1-m imagery contains more information than 
that at coarser resolutions, such as the 20-m SPOT data, but this raises two questions. 
How much of the additional information is of real use? What are the relative costs of 
obtaining, analysing and storing the extra data? Acquiring and storing 1-m data may 
entail a significant cost, even in an era of cheaper hardware and constantly increasing 
memory availability. The speed and accuracy with which data can be transferred and 
processed will be improved by reducing the data optimally for future use. The extent 
of data compression will depend on the degree of redundancy present in the data and 
what the future uses are likely to be. By examining 1-m imagery at a range of 
resolutions it might determine the stages at which crucial spatial information is lost 
and, therefore, whether processing the full set of data is worthwhile. 

Geostatistics has been applied successfully to remotely sensed data in a range ways, 
for example to improve image classification (Abarca-Hernandez and Chica-Olmo, 
1999), to monitor crop growth (Erickson et al, 1999), and to design optimal sampling 
schemes for ground surveys (Oliver et al, 2000), In this paper we use the variogram 
of Regionalized Variable Theory to compare the data from a SPOT satellite image and 
1-m CAMIS imagery over eastern Virginia in the United States. The 1-m data were 
sub-sampled to explore a range of distances between pixels, but less than that of the 
SPOT 20-m pixel. The analysis used the normalized difference vegetation index 
(NDVI) for both sets of data. The NDVI is related to the proportion of 
photosynthetically absorbed radiation and it is therefore useful for identifying changes 
in ground cover and possibly separating landscape features. Chavez (1992) showed 
that the NIR waveband contains greater within-scene variation than the red green or 
blue wavebands. Since NDVI incorporates NIR maximum variability is ensured. 

2. The study area and image data 

The area studied is part of Fort A. P. Hill in northeastern Virginia. It is located on the 
gently undulating terrain of the Atlantic Coastal Plain of the United States of America. 
The site was selected because of its complex topography which gives rise, in part, to 
the diversity in land cover in a small geographic area. The study area has been 
intensely dissected by many small ephemeral drainage channels that help to recharge 
the many ponds and wetlands, but the average relief is only about 15 m. Some of these 
ponds are evident as blue areas in the pixel map of NDVI from the SPOT image, 
Figure 1. Drainage is to two main river basins: the Rappahannock and the James. 
Hence there is a significant watershed crossing the Fort in an W-E direction. The area 
has mixed land use, the most extensive of which are the hardwood, pine and mixed 
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forests. In addition there is maintained grassland, shrub, and man-made features such 
as buildings and roads. 

2.1. The images 
The image obtained from the SPOT satellite has three wavebands, green (G), red (R) 
and near infrared (NIR). The normalized difference vegetation index was calculated 
from the red and NIR wavebands using the usual equation. The part of the SPOT 
image analysed had 178 rows and 151 columns, giving a total of 26 878 pixels. It 
covered an area of 3.6 km x 3.0 km. The 20-m pixel size of the SPOT image was the 
largest spatial resolution examined in this analysis. The 1 m x 1 m pixel image 
obtained from CAMIS sensors has four wavebands, blue (B), green (G), red (R) and 
NIR. As for SPOT the NDVI was calculated. There were some gaps in the cover of 
this image because it was formed from a photo-mosaic, comprising 8 499 498 pixels, 
Figure 2. Both images covered more or less the same area. To explore fully the range 
of spatial structures that might be present at different scales, the 1-m data was sub- 
sampled to provide information at an increasingly large separation. At the same time 
this reduced the amount of data for analysis substantially. Another way of achieving 
this would have been to average the digital information over the relevant block of 
pixels. This would have changed the support of the original data and would have 
reduced the variance present. Since our aim was to examine the extent of redundancy 
in the data we did not modify the original data by increasing the pixel size. The effect 
of this is something that should be explored in the future. 

Figure 2 shows the effect of combining several separate 1-m images to cover the study 
area; the colour intensity is not uniform. Since this could affect the variogram analysis 
we limited the sub-sampling to a maximum separation of 1 pixel in every 15 along 
each row and column (or 1 pixel in a block of 225). This ensured that the comparisons 
between pixels did not extend over distances much larger than 1000 m (about a third 
of the extent of the area). 

The first sub-sample retained one pixel in every two along each row and column. This 
gave a 2-m separation between the centroids of neighbouring pixels. This achieved a 
75 % reduction in the data. This process was repeated to give a 3-m separation 
between pixels (89 %. reduction in data), a 6-m separation (97.22 % reduction in 
data), pixels 10-m apart (99 % reduction in data), and pixels 15-m apart (99.6 % 
reduction in data). After the last reduction there were 37 553 pixels in the data, which 
was still more than the number of SPOT pixels. 

3 Methodology 

Spatial properties vary from place to place and this can occur at more than one scale 
simultaneously. As a result the spatial structures can vary at scales that differ by 
several orders of magnitude, from a few metres to hundreds of kilometres. This is 
known as nested variation. Such variation in spatial properties, including that in 
spectral imagery, can be described using the theory and methods of geostatistics 
(Oliver et al., 2001). The variogram is the central tool of this methodology; it 
provides an unbiased description of the scale and pattern of spatial variation. It does 
so by measuring the degree of spatial correlation between sampling points, based on 
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the notion that the property is more likely to be similar at nearby locations than at 
distant ones (Webster and Oliver, 2001). The variogram is defined by: 

r(h)^E[{z(x)-Z(x + h)}2] (1) 

where Z(x) and Z(x + h) are the values of Z, the property of interest, at any two places 
x and x + h separated by h, which is a vector in both distance and direction, known as 
the lag. The symbol E denotes the expectation. The semivariance, 7 at a given 
separation is half the expected squared difference between values at that separation. It 
summarises the way in which the variance of a property changes as the distance and 
direction separating any two points varies. 

We used variography to explore the spatial information in the SPOT and 1-m image 
data. The standard computing formula for estimating the semivariance at a given lag, 

his: 

1      M(h) 
f(h) = -^-It(x,)-^,+h)}2 (2) 

2M(h) Tt 

where 7 (h) is the estimate of }<h), z(x,) and z(xs + h) are the observed values of Z (the 

digital numbers in this case) at xs and Xj + h respectively, and M(h) is the number of 
paired comparisons at that lag. By changing h an ordered set of values is obtained, and 
this is the sample or experimental variogram. 

Mathematical functions or models were fitted to the experimental variogram by 
weighted least squares approximation using GenStat (Payne, 2000). The parameters of 
the variogram model describe the structure of the spatial variation and the scale(s) of 
variation present. 

4. Analysis and results 

Experimental variograms were computed from the digital numbers of the three 
wavebands of the SPOT image and for the normalized difference vegetation index 
(NDVI). Since the results for all are similar we describe those for NDVI only. 
Variograms were computed along the rows and columns of the SPOT image, and 
these were then averaged to give the overall variogram. They were computed to a 
maximum lag of 100 pixels (2000 m) for SPOT imagery and 1000 pixels (1000 m) for 
CAMIS imagery. 

Figure 3a shows the average experimental variogram for NDVI from the SPOT image 
computed to a lag of 100. It is evident that after a lag of about 40 pixels the 
experimental semivariances become erratic and after a lag of 80 pixels they start to 
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decrease. Since both of these features can have an adverse effect on modelling the 
variogram we fitted models to maximum lags of 40 and 80 pixels. A range of 
authorized mathematical functions was tried; this range is somewhat limited because 
they must be conditional negative semi-definite (see Webster and Oliver, 2001). The 
best fitting models to the experimental variograms, in the least squares sense, were 
nested exponential and spherical functions, which describe more than one spatial 
scale. Double exponential and spherical functions fitted all experimental variograms, 
except for that for the 1-m lag, which was fitted best by a triple spherical function. 
The equation for the double spherical function is: 

r(h) = c0+ci 
3h      1 'h^ 

l2fli 
v«i, 

■ + c. 
3Ä     1 

12a2    2 

r{h)=c0+cl+c2 

r(h) = c0+cl+c2 

3h     1 

2a2     2 ya2j 

for/i<a, 

for h<an 

for h > a. 

(3) 

where c0 is the nugget variance, c\ is the autocorrelated variance or sill and ax is the 
correlation range or range of spatial dependence of the first spatial structure, and c2 is 
the autocorrelated variance and a2 is the range of the second spatial structure. 

The triple spherical function is given by: 

y(h)=c0+c: 
3/z      1 f ,   A3 

2fli a, \   l ) 
> + c 

3/z      1 f ,. V 

2a2     2 ,«2   , 
• +C, 

3/z      1 

2a3   . 2 

f ,   V" 

Ka3 
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3h     1 
2a2     2 ya2 J 
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2a3     2 

y(h) = c0 + cx + C2 + c3 

y{h)=c0+cl+c2+c3 

3h     1 

2a-, 

f ,  A3 

Ka3 j 

for h<ax 

for h<a. 

for /z < a. 

for /z > a3 

(4) 

where c-i is autocorrelated variance and a^ is the range of the third spatial structure. 

The nested exponential function is given by: 

y(Ä)=c0 + c1{l-exp(-Ä/r,)} + c2{l-exp(-Ä/r2)} (5) 

where r\ and r2 are the distance parameters of the short-range and long-range spatial 
components, respectively. The exponential model reaches its sill asymptotically and 
therefore does not have a definite range of spatial dependence; a working range can be 
obtained as a = 3r. 
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In the first instance we fitted double spherical and exponential functions to the 
average experimental variogram computed to a maximum lag of 80 pixels. The best 
fitting model was the nested exponential one, which has an asymptotic sill as shown 
in Figures 3b: the symbols are the experimental values and the solid line is the fitted 
model. The double spherical model is not such a good fit as shown in Figure 3f and by 
the residual mean square (RMS) in Table 2. The parameters of the fitted models are 
given in Table 2. 

Fitting models to variograms is one of the most controversial aspects of geostatistics; 
there are no hard and fast rules and no consensus on whether to fit by eye or 
statistically. We prefer the latter because it provides a means of objective comparison 
between different models. From experience we know that model fitting is affected by 
any erratic behaviour in the experimental values. Figures 3a and b show that after a 
lag of about 40 pixels the variograms fluctuate about their sills. 

On closer inspection of the variogram computed to a lag 80 pixels it seemed more 
sensible to model the experimental variogram to a maximum lag of 40 pixels to 
achieve a better fit. Table 1 gives the best fitting model to the rows, columns and the 
average variograms to lag 40 pixels, Figure 3 c, d, and e, respectively. A double 
spherical provided the best fit in all cases because these variograms flatten to a 
distinct sill. Table 2 gives the model parameters; particular attention should be paid to 
the short- and long-range spatial structures. The variogram of the columns suggests 
that both spatial components have shorter ranges in an E-W direction than those for 
the rows in the N-S direction. Thus the variation is anisotropic. However, Figure 1 of 
the NDVI values does not suggest that this is pronounced. Four spatial scales of 
variation emerge from these variograms: about 130 m, 340 m, 450 m, and 640 m. 

We analysed all of the wavebands of the 1-m imagery, but we give the results for 
NDVI only. We also computed variograms of the rows, columns and average, but we 
present the results of the average variograms only. The observed differences between 
those of the rows and columns were similar to those for the SPOT data. We computed 
the variogram from the 1-m data to a maximum lag of 1000 m, but fitted the model to 
800 m, Figure 4a. The double functions fitted to the SPOT data did not provide such a 
god fit and triple functions were also fitted. The triple spherical model provided the 
best fit, Figure 4a shows the experimental variogram and best fitting model, and Table 
2 gives the model parameters. The double exponential model provided the best fit to 
all of the variograms of the subsets. 

The triple spherical variogram model fitted to the pixels separated by 1-m has a short- 
range component that matches that of the variograms from the first five sub-samples 
reasonably (see Table 3). The middle-range component matches that of the short- 
range component identified in the SPOT image, and the longest range matches that of 
the longest range fitted to both the SPOT data and to the 1 in 15 sub-sample. The 
variograms of the sub-samples are remarkably consistent except for the largest pixel 
spacing of the 1 in 15 sub-sample (1 pixel in a block of 225), Figure 4g. The scale of 
spatial dependence of the short-range component for the 2-m, 3-m, 4-m, 6-m and 10- 
m, Figure 4b, c, d, e and f separations is about 33 m, and that for the long-range one is 
between 310 m and 346 m. There is no equivalent of this short-range component in 
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the SPOT data because it is close to the size of the pixels. For the longer-range 
component this is close to the short-range parameter of the average variogram 
computed to the longer maximum lag (80 pixels), Table 2. For the largest separation 
between pixels of 1 in 15 the long- and short-range components are similar to those of 
the average variogram for the shorter maximum lag (40 pixels) for the SPOT data and 
to the largest range fitted to the 1-m data. 

6. Discussion and Conclusions 

For these particular data one outstanding conclusion from the results is that for the 
1-metre CAMIS imagery there is little to be gained in terms of detecting spatial 
structures of environmental interest with pixels less than 10-m apart. Therefore, the 
original 1-m data could be compressed by 1:100 in 2-D space, reducing the data by m 
99 % without affecting the variogram results. This suggests that substantial 
compression of huge 1-metre imagery data sets is possible without losing significant 
spatial information. On the other hand if information about man-made features or 
individual trees is of interest then this will not be so, but for imagery that is to be used 
for monitoring the landscape and other environmental tasks, this degree of data 
compression would be feasible. 

The results of the 1-m data analysis are remarkably consistent in terms of the spatial 
scales that they identify, and the longer ones match with scales of variation identified 
from the SPOT data. Nevertheless, the analysis of the 1-m imagery identifies a scale 
of spatial variation that is not evident from the SPOT data of the same region (Fort 
A.P. Hill, Virginia, USA). This scale of variation of about 30-m appears because of 
the increased resolution of the CAMIS imagery. It can be seen on the imagery, Figure 
2, and appears as 'pock marks'. It seems likely that this is a shadowing effect from the 
trees. The scales of variation identified in the sub-sample of 1 pixel in every 15 rows 
and every 15 columns are similar to those identified from the SPOT data when the 
maximum lag to which the variogram was calculated is 40 pixels. This finding is 
significant as researchers attempt to move seamlessly from one scale of spatial 
resolution to another to satisfy the needs in multi-purpose landscape characterization. 

For the SPOT data modelling the variogram was more difficult because of fluctuations 
in the experimental semivariances once the sill had been reached. Several 
permutations of modelling these variograms were tried and the results differed more 
or less (see Figure 3b and f). The approach to modelling can vary according to what 
the model is to be used for. A principal reason for modelling the variogram is to 
provide the spatial information needed for geostatistical prediction, kriging. In this 
case the fit of the variogram close to the origin is the most important because the first 
few lags only are generally used in local estimation. For exploring the spatial scales of 
variation present the overall fit of the model to different maximum lags becomes 
important and that is the approach that we have adopted here. 

A geostatistical comparison between information at different pixel separations 
provides an opportunity for deciding what level of data compression would be 
acceptable in an objective way. This could be investigated further by examining the 
quality of predictions from different methods of data restoration such as kriging and 
wavelet analysis using a cross validation procedure (Oliver, et at, 2000). 
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Figure Captions 

Figure 1. Pixel map of NDVI from a SPOT image for part of Fort A. P. Hill, Virginia, 
USA. 

Figure 2. Pixel map of 1-m CAMIS imagery for part of Fort A. P. Hill, Virginia, 
USA. 

Figure 3. Experimental variograms (symbols) and fitted models (solid lines) of NDVI 
from the SPOT data: a) average of rows and columns computed to 100 lags (2000 m), 
b) average of rows and columns computed to 80 lags fitted by an exponential function 
(1600 m), c) rows computed to 40 lags (800 m), d) columns computed to 40 lags (800 
m), e) average computed to 40 lags (800 m), f) average of rows and columns 
computed to 80 lags fitted by a spherical function (1600 m). 

Figure 4. Experimental variograms (symbols) and fitted models (solid lines) of NDVI 
from the CAMIS data: a) 1-m, b) 2-m, c) 3-m, d) 4-m, e) 6-m, f) 10-m and g) 15-m 
separation between pixels. 
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Table 1. Some current sensor systems with their spatial resolution and number of 

bands 

Sensor System 
Computerized Airborne Multispectral Imaging System 
 Space Imaging-IKONOS  

SPOT 
Landsat Thematic Mapper 

HYDICE 
Airborne Visible/Infrared Imaging Spectrometer 

Advanced Very High Resolution Radiometer 

Spatial Resolution 
1-m or less 

4-mMSI; 1-mPan 
20-m MSI; 10-m Pan 

30-m 
0.8 to 4-m 

20-m 
1.1-km 

# wavebands 

4, 1 
3,1 

210 
224 

Table 2. Model parameters for variograms from the SPOT Imagery 

Variogram 
Rows 40 
Columns 40 
Average 40 
Average 80 

Model RMS Co Cj_ Cl fli(m)     fl2(m) 
Double exponential 27.61     0      0.0341     0.0560     322.5 10602 
Double exponential No suitable fit achieved for this model 
Double exponential 63.21     0      0.0360     0.0080     344.0 1400.4 
Double spherical 52.39     0      0.0214     0.0225      139.2 674.8 

Table 3. Model parameters for the average variograms of different pixel separations 
for the 1-m imagery 

Variance Range 
Data set Model type 

Co c, C2 c,                a,/m ajm a,/m 

1 metre data Triple 0 0.01728 0.02560 0.01557      23.42 Ul.l 620.8 

1 in 2 pixels 
spherical 
Double 0 0.0245 0.0318 30.08 317.1 

1 in 3 pixels 
exponential 
Double 0 0.0255 0.0325 33.79 346.2 

1 in 4 pixels 
exponential 
Double 0 0.0250 0.0323 33.74 343.3 

1 in 6 pixels 
exponential 
Double 0 0.0245 0.0325 31.82 320.2 

1 in 10 pixels 
exponential 
Double 0 0.0243 0.0326 31.50 310.2 

1 in 15 pixels 
exponential 
Double 
exponential 

0.0215 0.0354 0.0068 109.1 626.4 
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APPENDIX III 

Paper submitted to International Journal of mathematical Geology - please do not 
quote from this or use the information therein. 

Haar wavelets and the generalization of the variogram 

E. H. Bosch1, M. A. Oliver2 and R. Webster3 

The experimental variogram computed in the usual way by the method of moments 
and the Haar wavelet transform are similar in that they filter data and yield 
informative summaries that may be interpreted. The variogram filters out the mean; 
wavelets can filter variation at several spatial scales and thereby provide a richer 
repertoire for analysis and demand no assumptions other than that of finite variance. 
This paper compares the two functions, identifying that part of the Haar wavelet 
transform that gives it its advantages, and suggests how the variogram might be 
elaborated with additional filter coefficients to reveal features of the data that are not 
evident in its usual form. 
Two examples in which soil data recorded at regular intervals on transects are 
analysed illustrate the extended form of the variogram. The apparent periodicity of 
gilgais in Australia seems to be accentuated as filter coefficients are added, but 
otherwise provides no new insight. Adding filter coefficients in the analysis of the 
topsoil across the Jurassic scarplands of England changed the upper bound of the 
variogram; it then resembled the within-class variogram computed by the method of 
moments. To elucidate these results we simulated several series of data to represent 
data with no stepped transitions, data with stepped transitions, data with long-range 
linear trend, and data with local trend. The results suggest that the wavelet variogram 
can filter out the effects of transitions from one class to another, as across boundaries, 
and long-range trend, but not local trend. 

KEY WORDS: filtering, Haar wavelet, variogram, wavelet analysis. 

1 USACE-ERDC-TEC, 7701 Telegraph Road, Alexandria, VA 22315-3864, USA 
2 Department of Soil Science, The University of Reading, P O Box 233, Reading 
RG6 6DW, UK 
3 Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, UK. 
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INTRODUCTION 

Computing and modelling the variogram have become common in geostatistics, 
mainly because it, or its equivalent covariance function, is a prerequisite for local 
estimation by kriging. It has merit in its own right, however, for describing spatial 
variation. The variogram of a set of data, usually termed an experimental or sample 
variogram to distinguish it from any underlying function, summarizes the general 
nature of spatial dependence and its extent and also the magnitude of the variation. 
Such a summary may then be interpreted (cautiously) in terms of physical process - 
see, for example, Webster and Cuanalo (1975). When bounded models, such as the 
circular and spherical functions, fit an experimental variogram well we may interpret 
them as representing transition structures; they suggest patchy distribution of values in 
which the patches have extents approximately equal to the ranges of the models. We 
can take this a step further and look for boundaries between patches at this scale, as 
did Webster (1973, 1978) and Oliver and Webster (1987). We know that in computing 
the variogram we lose any information about the mean; the variogram filters it out. 

In the last few years, wavelets have started to find application in the earth sciences 
(e.g. Lark and Webster, 1999, 2001; Oliver et al, 2000). These also filter data and 
enable structures to be revealed at various scales by multi-resolution analysis. 
Wavelets have some similarities with the windowed Fourier functions, but the wavelet 
transform can characterize low frequency and high frequency resolutions 
simultaneously. Wavelets operate locally, and the analysis starts with the choice of a 
mother wavelet w(x), for which x is spatial position, that can be dilated or shrunk. 

As it happens, one form of wavelet, the wavelet of Haar (1910), was published at 
about the same time that Student (in Mercer and Hall, 1911) realised that the variation 
in yield between adjacent trial plots at Rothamsted Experimental Station was derived 
from two sources: an autocorrelated component (structured) and a random component 
(locally erratic). This idea predates the variogram of geostatistics by several decades, 
but it was a definite precursor to it. In the same way, the Haar wavelet (Figure 1) was 
described long before recently developed wavelet analysis (Daubechies, 1988). The 
Haar wavelet transform is remarkably similar to the experimental variogram. 
Wavelets can filter out not only zero and first-order moments, but also higher-order 
moments. They can also separate variation into components from several spatial 
scales, by what is known as multi-resolution analysis. They provide a much richer 
repertoire for spatial analysis than the simple variogram because they are not 
constrained by the assumption that the underlying variable is random. 

The purpose of this paper is to show the similarity between the original Haar wavelet 
transform and the variogram of a set of data and then to suggest an extension of the 
latter for more general description. 

THE WAVELET 

In wavelet analysis a signal (information) is represented in terms of a set of functions, 
which we denote wsu(x), where s signifies scale and u the translation space. These are 
basis functions or kernels; they are a set of linearly independent functions that can be 
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used to produce all admissible functions/(x) (Strang and Nguyen, 1996). Furthermore, 
they are constructed from the single mother wavelet w(x) by scaling it (by 2') and 
translating it (by u): 

W™(X)=^7IYW 
!      ( „       \ x 
 u r (i) 

Combining the basis functions with the wavelet function gives 

/(*)=X5>»"„(*). (2) 
s      u 

where bsu is the coefficient of the basis function wsu(x) at scale s, translated by u, and 
the magnitude of which provides a measure of the significance of wsu(x). 

By varying s and u we can analyse a signal at several resolutions in a multi-resolution 
analysis of the wavelet transform. The wavelet function w(x) is constructed from a 
scaling function </>(*) which can be specified by a discrete low-pass filter /„. Similarly, 
the wavelet function w(x) can be specified by a discrete high-pass filter hn. The low- 
pass filter smoothes the signal, while the high-pass filter retains the detail in the 
signal. Daubechies (1992) and Mallat (1998) describe the procedures fully. 

THE EXPERIMENTAL VARIOGRAM 

We start with the familiar formula for computing the variogram based on the method 
of moments. For n data z{i), i = 1,2, . . . , n, spaced at regular intervals along a line, 
Figure la, the semivariance is 

where t, an integer, is the lag separating the data points z{i) and z(i + t). By 

?(t) = —±—Y{z(i)-z(i + t)}2, 
2(n -1) ,-=, 

incrementing t we obtain the ordered set, the experimental variogram. 

To see the relation between it and the Haar wavelet transform we develop the 
semivariance in terms of matrices. Starting with t=\, for which the comparisons are 
shown in Figure 2a, we define a matrix Bi with n - 1 rows and n columns: 
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B-i 

1-10     0   0 

0     1     -10   0 

0     0      0 

0 

0 

.01-1 

(4) 

Multiplying Bi by the data vector z=[z(l) z(2) ... z(rc)]T we obtain 

B,z = 
4i 

1-10    0   0 0 z(D z(l)-z(2) 

0     1     -10   0 0 z(2) 

1 

z(2)-z(3) 

0    0     0.. 0    1 -1 zin) z(n-l)-z(«) 

(5) 

Thej'th component of BjZ is {z(J) - z(j + 1)}/VZ. So to obtain y(l) we simply square 

the elements of B]Z, sum them, and divide by n - 1: 

7(1) = -^-(B1Z)
T
(B1Z) = -^-Z

T
B;B1Z. (6) 

n-1 n-\ 

We have thereby computed the square of the Euclidean norm of the vector B]Z and 
scaled it by dividing it by n - 1. The square of the Euclidean norm of a vector z, of 

length n, refers to the following: zTz = ^"^(z,)2, which is the same as the sum of the 

square of the components of z. In other words, Equation (6) expresses f(l) as a 

quadratic form - see also Cressie (1993), page 73. 

Now, to compute f (2) we define a matrix B2: 

B2=^ 

10-100...     0 

0    1     0-10...     0 

0   0     0 1   0   -1 

(7) 

126 



DRAFT 

Matrix B2 has n - 2 rows and n columns. Multiplying it by the data vector z we obtain 

**=Ti 

1    0   -1 0    0   . .    .     0" z(D 
0   1     0 -1   0   . .    .     0 z(2) 

0   0    0 1   0   -1_ _z(n) 

4i 

z(D-z(3) 
z(2)-z(4) 

z(n-2)-z(n) 

(8) 

As for f(l) we compute y(2) by 

7(2) =—^(B2z)T(B2z) = —!— zTBlB,z . 
n-2 n-2 '1"2' (9) 

In general we can define a matrix Bk with n-k rows and n columns in which the non- 
zero values 1 and - 1 are placed in the first and (k + l)th elements of the first row, in 
the second and (k + 2)th elements of the second row, and so on. On multiplying 
through we obtain the general expression for the semivariance equivalent to Equation 
(3) as 

7W=-i-(Btz)T(B,z)=-1-Z
TB^B,z. (10) 

THE HAAR WAVELET TRANSFORM 

Let us now look at the original Haar wavelet transform. The Haar wavelet transform 
splits the sequence of data, usually termed the signal in the literature on wavelets, into 
two sets of components corresponding to the basis coefficients of two orthogonal 
subspaces. One component contains the information pertaining to the local averages 
of the signal, the smooth or low-frequency components, while the other contains 
information on local fluctuations in the signal, the detail or high-frequency 
components. The Haar wavelet function has the form of a local square wave, shown in 
Figure 2. 
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We proceed as follows. We suppose that the signal z has n values measured at equal 
intervals, as before, but with the constraint that n is a power of 2, say n=2m. For 
reasons that will become clear below we shall designate it z, = z. We define two 
matrices. One, which we denote Li containing Is and Os, is for the low-frequency 
component and appears in Equation (11). The matrix L, is associated with the scaling 
function <p(x) described above. The other, denoted Hi for the high-frequency 
component and containing Is, - Is and Os, occupies an analogous position in Equation 
(12). The matrix Hi is associated with wavelet function w(z) described above. Both 
are of dimensions nil rows by n columns. We multiply the matrices, scaled by 1/» 2, 
by the data vector Zi to give 

"1    10   0   0   0. ...    0 z,(D z1(l) + z1(2) 

0   0    1    10   0. .    .   0 z,(2) z,(3) + z,(4) 

7     - T , /, II 

fe
ll-

 0   0   0   0    1    1 .    .    0 z,(3) 
l 

^4i 

z,(5) + z1(6) 

0   0   0.     .     . 0   1    1 zM) z,(n-l) + z,(«) 

(11) 

and 

d2=HlZl--^ 

1-10 0 0 0 

0 0 1-10 0 

0     0     0     0     1-1 

0     0     0 

0 

0 

0 

.01-1 

z,(D 
z,(2) 

z,(3) 

z,(«) 

1 

71 

z.CD-z,^) 

z,(3)-z,(4) 

z,(5)-z,(6) 

z, (n -1) - z, (n)_ 

.(12) 

We thereby obtain a vector z2 containing the sums of neighbouring values (divided by 
V2) and a vector d2 of their differences (also divided by V2). The elements of the first 
provide us with a measure of the smoothness of the signal, whilst those of the second 
tell us about the detail, variation or change in z,. Note that z2 and d2 consist of half the 
number of components of zi, which is due to the number of rows of Li and Hi 
respectively. 

From the definition of Li and Hi it is evident that the rows of Li are orthogonal to one 
another, as are the rows of Hi. The rows of Hi are also orthogonal to those of Li. This 
is true for all orthogonal wavelets. Furthermore, the rows of Li and Hi_ respectively, 
form an orthonormal set of basis vectors. From z2 = LjZi and d2 = HiZi (the 
coefficients of the corresponding basis vectors) we can compute the inverse wavelet 
transform to obtain Zi from the following 
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L{LlZl + H^z, = (LjL, + H[H, )z, = Iz, = z,, (13) 

where I is the identity matrix. 

We can now take the analysis a step further by splitting z2 in a similar way. We define 
two matrices L2 and H2 (scaled by \Nl) having the same structure as Hi and Li, but 
with nIA rows by nil columns each instead of nil rows by n columns, and we multiply 
them by z2 to give the vectors z3=L2z2 and d3=H2z2, respectively. As in Equation (13), 
we can obtain z2 from z3 and d3. We can repeat the procedure until we exhaust the 
data. At each step we split the smooth component of the signal from the previous step 
into orthogonal smooth and detail components. Finally we obtain two sets of vectors, 
Zj and d,, j=2, 3,..., m + 1, where n=2m. This series of transformations will provide us 
with a means of analysing the signal at different resolution levels. Furthermore, 
synthesizing Zj and d; for levels j=2, 3,..., m + 1 to obtain zi provides for a 
multiresolution analysis; see Walker (1999), page 14. 

COMPARISON 

The matrices B* (of the successive differences, Equation (5)) and H/ (of the alternate 
differences, Equation (12)) show the similarities between the variogram and the Haar 
wavelet transform. However, there is not a one-to-one correspondence between them; 
we cannot equate the variogram at any particular lag with any high-frequency 
component of the wavelet transform. This is because in computing d, at any particular 
j we have lost the detail in the original signal at each of the previous 7-1 steps, and in 
each of those steps we have halved the number of rows in the matrices. 

Nevertheless, by expressing the variogram in terms of the matrices B* in Equation 
(10) we see that f(k) does contain terms corresponding to the norm of the high- 

frequency components H/Z7 of the Haar wavelet transform. 

Consider first the semivariance y(l) at lag t=\ and the detail d2= H]Zi of the wavelet 

transform. Notice how matrix Hi is related to matrix Bi used to form the y(l)— it 
consists of the odd-numbered rows of Bi only. So let us define a matrix Ai such that 
Ai = Odd rows (Bi). Then for the case t=\ 

(ZlH[HlZl)     (z,A?'A1zl)_    1   ^(z(2i-\)-z(2i)^ 
2 

n-\ = —X n-ltf 4~2 
(14) 
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Following from the above we find that the semivariance at lag t=\ consists of two 

terms: 

i    «-I     v J      v z(i)-z(i + l) 

1   &(z(2i-l)-z(2i) V        1   "^(z(2i)-z(.2i + l)^ 

Odd rows of B, 

"-1  ,-=i V2~ 
Even rows of B, 

and by Equation (14), 

n/2-1 

rt-1 «-1   ;=i 

z(2Q-z(2i + l) (15) 

In words, f(Y) contains the norm of the detail component of the wavelet transform at 

level 1 scaled by l/(w-l). When t=2 the corresponding f(2) contains some 

components of the norm of the next level of detail, namely d3=H2z2 of the Haar 
wavelet transform. However, the norm of H2z2 contains terms that are not in 7(2). 

The same is true for other values of t and different levels of detail, the dj of the 
wavelet transform. 

What is striking about the matrices B* and H, is that both consist of rows the elements 
of which are only 0, 1 and - 1. In the Haar wavelet transform, the non-zero scaling 
(smoothing) coefficients are given by U = h = 1/V2, whereas the non-zero detail 
(difference) filter coefficients are hx = 1/V2 and h2 = - 1/V2. All the other coefficients 
are zero: /,- = ht = 0, for all i >2. The wavelet transform is obtained by shifting by 2 the 
rows of the matrices L, and H,. The variogram, however, is obtained by shifting by 1 
its rows and by increasing the lag between the non-zero elements of each its rows, 
Figure lb. From this we can see that the rows of B* (a running difference), which are 
associated with a two-point variance, are related to filtering data with the Haar 
wavelet filter coefficients l/v2 and -1/V2. In general, the variance of n data z(i), i = 
1,2,. . ., n, can be computed by a circulant matrix the rows of which are shifts of the 
following elements: (n-\)/n, -1/»,..., -1/n. Since the mean of z is given by 

/j={z(l)+z(2)+...+z(/i)}/n, and the variance is given by a1 = -^{z(i)-ßf ■ We 
n — l ,=i 

can express the variance as (u u)/(n-l) which is the same as (Pvz) (Pvz)/(n-l), 
where 
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u = 

and 

~z(X)-H~ 
z(2)-p 

— 

_z(n)-VL_ 

Pv=- 
n 

{(n-l)z(l)-z(2)-...-z(n)}/n 

{- z(l) + (n- l)z(2) - z(3) -... - z{n)}l n 

{-z(l)-z(2)-...-z(n-l) + (n-l)z(n)}/n 

(n-1)      -1      -1    ...       -1 

-1      (n-1)    -1    ...       -1   , 

■1 -1       ...    -1    (n-1) 

(16) 

It is not difficult to show that (Pv)
2 = Pv and (PV)T=(PV). In other words, Pv is a 

projection and is symmetric. From this relation we can rewrite the variance of z as 
follows: 

T/T»   \2r (Pvz)T(Pvz) _ (zTPv'PYz) _ (z1 (PvPv)z) _ (z' (Pv)
zz) 

n-1 n-1 n-1 n-1 
(17) 

(zT(Pvz)) 
n-1 

This means that the variance of z can be expressed in terms of a projection matrix thus 
providing a very simple and elegant way of computing such a measure. Therefore, we 
can see from Equation (17) that an n-point variance can be couched in terms of 
shifting the filter coefficients (n-l)/n, -1/n,..., -1/n. 

CONDITIONS FOR WAVELET TRANSFORMS 

One of the conditions that must be satisfied for the wavelet transform is that 

i>,=o, 
i=i 

where k (finite) corresponds to the number of filter coefficients. 
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Clearly, from the paragraph above, this holds for the Haar wavelet, for hx= -h2 and all 
the other coefficients are zero. The same coefficients are also present in the formula 
for the variogram but in a different order because of the lag parameter t in the 
variogram. Nevertheless, despite their differences, both formulae provide measures of 
detail or variation in a signal at several scales. 

EXTENTION 

We have seen above that there are just two non-zero filter elements in H, and L,. 
Nevertheless, wavelet transform filters can contain more elements. So, by analogy, 
why do we not introduce more terms into the variogram? We start with 

f{t) = -L-X{h]Z(i) + h2z(i + t)}2 , (18) 
n-t ,=, 

where h\ = 1/V2 and h2 = -1/V2, and we add a third and fourth terms to give 

and 
f(t) = —^Y{h1z(i) + h2z(i + t) + h3z(i + 2t)}2 , (19) 

n-2t ,-=, 

f(t) = -^—Y{/i1z(/) + h2z(i + t) + h3z(i + It) + h4z(i + 3t)}2 , (20) 
n - 3t ~{ 

on the condition that at least we have ]T*=] /z, = 0. Note that in Equation (16), the 

filter coefficients (n-\)/n, -\ln,..., -\ln also sum to 0 (the filter has one vanishing 
moment). Equation (16) shows that if c^-O then z=0 or z=c (constant). 

Furthermore, in general, the hi and h2 in Equation (19) are not the same as those of 
either Equation (18) or Equation (20). Similarly, the hu h2 and h3 of Equation (20) are 
not related to those of Equation (19), and so on. Increasing the number of filter 
coefficients ht allows for such coefficients to satisfy other conditions. We shall 
elaborate on these conditions below. 

Remember also that the wavelet transform is local. And so we should expect the detail 
filter coefficients to smooth out the long-range (low-frequency) features in the signal 
while retaining the high-frequency ones. 

Incorporating these coefficients into the formula for the variogram may be beneficial 
in that it embodies more information than just the differences between pairs of points. 
The matrices for three non-zero coefficients become 

132 



DRAFT 

B,= 

\    h2    A3     0    0 

0    h    h0    h,    0 

0     0     0 hx    h2    hi 

(21) 

so that 

y(l) = -^-zTB?'B1z, 
n-2 

and 

B, 

\    0    h2     0    A3     .      .     .     0 

0    Ä,     0    A2     0    h3     .     .0 

0     0     0      .     Ä,.    0    Ä,    0   Ä, 

(22) 

and 

7(2) = —^-zTB^B2z, 
«-4 

In general with three non-zero coefficients we shall have 

y(k) = —^— ZT
B:B,Z. 

n — 2k 'k"k' 

This is more restrictive than for the usual variogram because we have only n - 2k 
terms in the sum instead of n - k, and so we run out of data more readily. 
Alternatively, we may see it as demanding more data. The situation will be 
accentuated if we want more than three filter coefficients. 
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VANISHING MOMENTS 

To see how to elaborate the variogram as suggested above we need to understand the 
concept of vanishing moments. We explain the concept via the y-transform of the 
filter coefficients, setting y=exp(ico), where i=V-l, and co is the frequency variable, 
and forcing the transform to have 77 zeros at co = 0, i.e. y = 1. (The quantity 77 is the 
number of vanishing moments, and 2r\ is the number of filter coefficients). This 
allows the filter to cancel out the signal's low-frequency content. We shall see below 
that cancelling the low frequencies is related to cancelling polynomials of order up to 
277 — 1. The y-transform of the filter is given by 

277-1 

P2n(y) = l<hi<y~k 

fe=0 

or equivalently 

277-1 

I 
Jc=0 

2T)-1 

p2v(a>) = ^hkexp(-icok). (23) 

(Note that p2ri(y) is not a polynomial in y since the exponents of y are negative). For 
computational convenience the filter coefficients are given by h0,hu ..., h2r,-\- Forcing 
the polynomial equation to have 77 zeros at co = 0 means that 

277-1 

p2ri(co) = ^hkexp(-icok)= CO71 r(co), (24) 
*=o 

where r(cd) is a polynomial in terms of CO. Note that for pi^co) to have 77 zeros at 
co = 0 also means that its first 77 - 1 derivatives are 0 when co = 0. That is, 

dm n    (CO)     27H P7*„     =fJhk(-ik)m exp(-iö*) = 0, (25) 

for 0 < m < 77 - 1. Factoring (- i)m from the right hand side of Equation (25) and 
letting co = 0 we obtain the vanishing moment conditions for values of m where 
0<m<77-l: 

217-1 

^hkk
m =0, which is the same as (26) 

k=0 

V + V0 +M° +--- + /z2rH(277-1)° =0, whenm = 0 

/z00' +/1J1 +h22* +--- + /i2rH(277-l)1 =0, whenm = l 

fact      hoO"-1 +hll«-1 +h22"-* +-- + h2^(2n-l)n-] =0, when m = 77-!. 
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that Equation (26) is zero means that increasing the number of vanishing moments in 

the filter will also reduce to zero sections of length 27] of polynomial curves of degree 
0 < m < 7] - 1, when the filter coefficients are convolved with such polynomials. That 

is, not only will the filter coefficients ht reduce to zero the powers of 0, 1, 2, ..., 277-1» 

but the powers of (0+r), (1+ r), (2+ r), ..., (2T]-1+ r), where r is any fixed real 
number, are also reduced to zero. It is important to note that Equation (26) is not a 

polynomial function of k, since k is just an index in the range of 0< k < 2r\-\. 

Interesting properties are obtained when the filter coefficients ht, with 77 vanishing 

moments, are applied to a polynomial of degree m > r\. This operation acts on the 
polynomial like a derivative of order m-77, producing a polynomial of degree m-77. 

For example, consider the following polynomial s(y) 

s(y) = 2^hk(k + y)m, 
fc=0 

2T)-\ m   f Kyi   > 

t=o      ;=o 
y'k1 (27) 

V     J 

where m>rj,hk are the usual filter coefficients with exactly r\ vanishing moments and 
(k+y)m is a polynomial in y of degree m. Equation (27) can be rewritten as 

277-1        m 

*=0        1=0 

^m^ 

^m^ 

;=o r y 

v' J 
2TJ-1 

X' 
*=0 

^m^ 

v    / 
v'c,., (28) 

2^' fO, m-i<n-l<^> i>m-ri + l 
where c, = Shkk

m- =\ 
f^Q I non zero real number, m-i>r\ <^> 0<i<m-rj. 

Clearly, since c, is nonzero for 0 < i < m-rj, we have that s(y) = ^ 
m^fm\ 

i=0 

c, y  is a 
V    / 

polynomial in y of degree m-77. Therefore, the degree of the polynomial (k+y)m has 

been reduced to m-77 fr°m m- This means that as the filter runs over the signal, those 
portions of the signal consisting of polynomials of order m < 77 will be reduced to zero 
or sustain a reduction in order if m > 77. This is what occurs with the ordinary 
variogram except that the filter coefficients 1/A/2 and -I/V2 cancel out only constant 
trend (polynomials of order zero). Real data in general do not consist exactly of 
polynomial functions unless a polynomial (exact or in the least squares sense) is fitted 
through the data points. Nevertheless, as the filter's number of vanishing moments 
increases, the wavelet-based variograms may be useful to identify higher-order 
polynomial global trend in a signal. 
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APPLICATION 

We have shown above the relation between the conventional experimental variogram 
and the filter provided by the Haar wavelet coefficients. We used the relation to 
suggest a generalization of the variogram so that it could incorporate other filter 
coefficients such as (but not limited to) Daubechies's 2/7 coefficients. Daubechies's 
wavelet filters are a natural extension of Haar's wavelet filter. For an even number of 
filter coefficients 2 77, the wavelets satisfy 77 orthogonal conditions as well as 77 
vanishing moments. 

We have used Daubechies's high-frequency filter coefficients for 277= 2, 4, 6, and 8. 
(When 277 = 2 we have the Haar filter.) Table 1 lists their values. Since the wavelet 
transform is the convolution of a signal with a wavelet filter followed by sub- 
sampling, the operation requires the filter (or the signal) to be reversed. The values in 
Table 1 are listed in reverse order (relative to the wavelet transform) to show the order 
in which the coefficients have been applied to Equations (18), (29) and (30). We 
emphasize that if we choose a different order for the wavelet coefficients we shall 
obtain different results. Nevertheless, note that in Equation (3) for the ordinary 
variogram we have {hlz(i)+h2(i+t)}2={h2z(i)+ hiZ(i+t)}2. This indicates that the order 
is not important since there are only two filter coefficients that differ only by their sign 
and the whole quantity is squared. 

We now apply the ideas to soil data from two transects, both of which have been re- 
analysed recently by Lark and Webster (1999) using wavelets. 

Caragabal transect 

Caragabal is on the Bland Plain of Eastern Australia. The topography is flat, but the 
Plain is pocked by gilgai, that is by small depressions typically from a 10 to 40 cm 
deep, 2 - 3 m across, and 20 to 40 m apart and which occur in a seemingly regular 
pattern. The soil is dominantly clay but with a sandier surface horizon of variable 
thickness, alkaline and locally saline, especially in the gilgais themselves. 

The soil was sampled by Webster (1977) using a 7.5-cm diameter corer at 365 points 
at 4-m intervals along a transect. We used the records of the soil's electrical 
conductivity, a measure of its salinity, at 30 - 40 cm for our application. Table 2 
summarizes the data. The measured values are strongly skewed, and we have 
transformed them to their common logarithms for our analysis. Table 2 summarizes 
their statistics, and Figure 3 shows the (erratic) trace of the data as the solid line. 

Variograms were computed with the usual formula, Equations (3) and (18), and then 
with its wavelet-based extension 
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f(t) = _J_ y'fozfl) + h2z(i + t) + h3z(i + 20 + h,z{i + 3t)}2 (29) 
n-3t /=1 

and 

^t) = _J—y(V(z) + /z2z(/ + 0 + M* + 20 + Ä4z(i + 30 + M* + 4?) + M» + 5?)}2» (3°) 
n-5t M 

corresponding to Daubechies's high-frequency filter coefficients 4 and 6, respectively. 
Figure 4 shows the result. The three variograms are remarkably similar to one another, 
though we see that as the number of filter coefficients increases so does the amplitude 
of the periodic component. See Table 1 for a list of several of Daubechies's wavelets. 
This is a consequence of the wavelet's sensitivity to the variation in the data. 
Wavelets in general eliminate smooth variation such as trend functions that can be 
represented by low-order polynomials, but not the local fluctuation. However, the 
variation introduced in Equations (29) and (30) by the additional terms z(i + kt) and 
the filter coefficients is minimum. 

Sandford transect 

Sandford-St-Martin lies on the Jurassic scarplands in Central England. The soil there 
has formed by the weathering of the gently dipping limestone, sandstone, siltstone, 
and shale of the Jurassic era, and in Recent alluvium. Webster and Cuanalo (1975) 
surveyed a transect 3.2-km long across the outcrops by digging pits at 10-m intervals 
and recording the soil to 1 m depth. For present purposes we have analysed the clay 
content at two depths, topsoil (centred at 8 cm) and subsoil (centred at 65 cm), in the 
profile. Their statistics are summarized in Table 3, and Figure 5a and b shows the data 
for the topsoil and subsoil, respectively, plotted against position on the transect. As for 
Caragabal, the solid lines join the observed values and show much point-to-point 
variation. The bold dashed lines show the step changes in the mean at the boundaries 
between the geological formations. 

Again, as for Caragabal, we computed variograms with the usual formula and then 
with its extension containing the wavelet-based coefficients. Figures 6 and 7 display 
the results for the topsoil and subsoil, respectively. The variogram of the clay in the 
topsoil (Figure 6a) seems clearly bounded. Webster and Oliver (1990) modelled it 
successfully with spherical and pentaspherical functions, with a sill variance of about 
200 (%)2 and a range of about 250 m. The wavelet-based variograms with 
Daubechies's high-frequency filter coefficients 4 and 6, however, increase more 
gradually and have smaller maxima -125 (%)2, which they reach at shorter lags 
(150 m for Daubechies's 4 and about 100 m for Daubechies's 6, Figure 6a). All 
appear to approach the same value on the ordinate. 

To explore possible causes for the difference between the usual variogram and the 
wavelet based variograms we examined the influence of the marked boundaries along 
the transect. We removed their effect by computing the residuals from the geological 
segment means and computed the variograms on these residuals. The result is the 
pooled within-segment variogram, Figure 6b. The three variograms are very similar to 
one another. The usual variogram of the residuals now has a much smaller maximum 
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of 100(%)'2 which it reaches at 75 m. This is the same for the wavelet-based 
variograms. It seems that the latter remove the effect of the boundaries (see Figure 6a) 
— Webster and Cuanalo (1975) identified 14. Geostatisticians might regard these 
local step functions as deterministic features to be removed before computing 
variograms on the residuals. It appears that the wavelet variogram filters out such 
trends where they occur. 

The variogram of the subsoil clay content was fitted best by a pentaspherical model. It 
increases to a sill of about 700(%)2 at 260 m (the range), Figure 7a. The variogram 
from Daubechies's 4 high-frequency filter coefficients is similar, Figure 7a. That for 
Daubechies's 6 rises more steeply to a slightly larger maximum at about the same lag 
distance as above, Figure 7a. The variograms computed from the residuals of the 
segment means, Figure 7b, are similar to one another. 

To try to explain the reasons for the difference between the wavelet-based variograms 
of the top- and sub-soil we did an analysis of variance to determine the proportion of 
the total variance accounted for by geology. The results of the analysis of variance are 
given in Table 4. The proportion of the topsoil variance explained by geology is 
36.8% and that for the subsoil is 39%. This difference is not sufficient to explain why 
the wavelet-based variograms filter out the effects of the boundaries for the topsoil, 
but not the subsoil. A possible explanation for this is the large difference between the 
mean for the first part of the transect, positions 1 tol58, and that of the second part, 
positions 159 to 321. 

Simulated transects 

To attempt to understand the results of the above analyses we simulated a one- 
dimensional sequence of values in three ways using LU decomposition (see 
Goovaerts, 1997, for a description of the method). We used a spherical variogram 
function with zero nugget and a sill variance of 1 for each simulation. The spherical 
function is widely encountered in the earth sciences and provided the best fit to the 
experimental variograms for the Sandford data. The first simulation was of a single 
process based on this variogram with a range of 45 units, Figure 8a (fine line). To 
emulate the effect of boundaries, such as those along the Sandford transect, the second 
simulation incorporated a stepped function superimposed on it with a variance of 
0.75, Figure 8b. The lengths of the segments were drawn at random from an 
exponential process with a mean of 0.035. Burgess and Webster (1984) discovered 
that such lengths in the real world are well fitted by exponential distributions. 
Although we simulated the steps by random processes, we often know from prior 
information in the field where to expect them, as on the Sandford transect. They can 
be thought as a form of regional trend because they result in predictable changes in the 
mean. 

Regional trend also results from a gradual change in values with autocorrelated 
random fluctuation superimposed. An example of this is the top of the sub upper chalk 
surface described by Moffat et al. (1986). The third simulation was based on the same 
variogram function as the first, but with a linear trend of 0.02 superimposed, Figure 
8c. 
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Local trend or drift is also a feature of the real world, where smooth predictable 
change in a property occurs over short distances. The electrical resistivity measured at 
Beckesbourne by Webster and Burgess (1980) is one such example. Solifluction and 
soil creep on hillslopes are also likely to give rise to local drift. To simulate this effect 
the first simulation was smoothed by an 11-point moving average, Figure 8a. 

Simulation with a single random process 

The sequence of simulated values in Figure 8a shows them fluctuating about a mean 
value. The usual variogram and the wavelet-based variograms with Daubechies's 
high-frequency filter coefficients 4 and 6 were computed for these data. Figure 9 
shows the result; they reach a similar upper bound, but the wavelet ones fluctuate 
more on reaching their maximum. 

Simulation with a stepped function superimposed with a random process 

Figure 8b shows the simulation with stepped functions of random extent (the dashed 
line) with an average extent of 45 units and variance of 0.893, superimposed on a 
random process generated by a spherical variogram with zero nugget, sill of 0.25 and 
a range of 15 units. The latter is the average extent of the within-segment variation. 
There were nine boundaries or step changes and so the sequence no longer fluctuates 
about the mean; there are sections where the average value is small and others where 
it is larger. 

The usual variogram for this simulation reaches an upper bound at about 40 units, 
which is close to the average spacing between the boundaries of 45 units, Figure 10a. 
There is a kink in this variogram at around 15 units which signals the nested structure 
simulated. The wavelet-based variogram with Daubechies's high-frequency filter 
coefficients 4 reaches a smaller maximum at about 20 units of distance and then 
decreases, as does that for Daubechies's 6 which fluctuates more about the upper 
bound. These results suggest, as for the topsoil clay content of the Sandford transect, 
that the wavelet variograms filter out the effects of the long-range transitions in the 
variation. This is confirmed by the variograms computed on the residuals from the 
class means for this simulation, Figure 10b. The three variograms are similar to each 
other - they reach an upper bound of about 0.25 which is reached at about 15 units. 
This reflects closely the short-range function used for simulation. 

Simulation of a random process with a linear trend superimposed 

The sequence of values in Figure 8c shows the smooth regional progression in values 
from let to right with random fluctuation superimposed on this. Variograms were 
computed as above for this simulation. There is a clear difference between the usual 
variogram and the wavelet-based ones, Figure 11. The former is unbounded, it is the 
kind of variogram we should expect where the data contain a marked linear trend. The 
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wavelet-based variograms, Figure 11, describe more closely the spherical function 
used to simulate the random process. This result also suggests that the wavelet 
variograms filter out the effects of regional trend in the data as well as those of 
transition features. 

Simulation of a smooth process 

Figure 8a shows the 11-point moving average of the underlying random process 
generated from a spherical model with zero nugget, a sill of 1 and a range of 45 units 
(thick solid line). The local smoothness or continuity in these values is evident in the 
concave slope near to the origin of the usual variogram, Figure 12. In geostatistics 
such data should be analysed using a structural analysis (Olea, 1975) to remove the 
local trend. The effect of the latter appears to be amplified in the wavelet-based 
variograms; their concave slopes near to the origin are more pronounced, Figure 12. 
Thus it seems that wavelet-based variograms do not provide a solution to local drift, 
and this should continue to be dealt with geostatistically. 

DISCUSSION AND CONCLUSION 

We show above the mathematical similarity of the method-of-moments variogram and 
those derived from the high frequency wavelet coefficients, Daubchies's 4 and 6. The 
experimental variogram computed in the usual way is sensitive to local and regional 
trends in the data. Their presence is usually evident in the shape of the variogram and 
is a sign that the stationarity assumptions on which much of the standard geostatistical 
technique is based will not hold. As a consequence the residuals from the regional 
(arising from gradual and stepped changes) and local trend should be determined and 
used for further analyses. The wavelet-based variograms appear to filter out regional 
trends that can result from smooth or stepped changes in the regional mean. This 
would avoid the need to examine the data for trend first. The effects of local trend or 
drift, which are less common in most earth science data, appear to be amplified by the 
wavelet-based variograms, however. 

This is a preliminary comparison of the wavelet-based variograms with Matheron's 
estimator, and we urge caution in assuming that these results are general. More 
sequences of data need to be analysed to generalize our observations. 

Finally we should add that our circumspection is augmented by the large differences 
in simulations from the same function, but with different seeds. The inconsistencies 
concern us, yet many researchers continue to place great faith in simulation. We had 
some difficulty in obtaining sequences with experimental variograms like those with 
which they had been simulated. 
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Table 1. High-frequency Haar and Daubechies filter coefficients (in reverse order) 
for 77=1, 2, 3, and 4, i.e.2r7=2 (Haar), 4, 6, and 8. 

277        hj hi h h hs h hj h% 

2 -0.7071    0.7071     0 0 0 0 0 0 
4 0.1294     0.2241     -0.8365    0.4830     0 0 0 0 
6 -0.0352   -0.0854   0.1350     0.4599     -0.8069   0.3327     0 0 
8 0.0106     0.0329     -0.0308    -0.1870   0.0280     0.6309     -0.7148    0.2304 

Table 2. Summary statistics of the soil's electrical conductivity at 30-40 cm at 
Caragabal from 365 data 

Rlectrical cnndncfi vi ry 
mS cm"1 Log io(mS cm"1) 

Minimum 0.06 -1.214 
Maximum 5.10 0.707 
Mean 0.985 -0.230 
Median 0.54 -0.267 
Variance 0.959 0.192 
Standard deviation 0.975 0.428 
Skewness 1.64 0.100 

Table 3. Summary statistics of the clay content as percentage by weight in the topsoil 
(5-10 cm) and subsoil (62-67 cm) at Sandford from 321 sampling points. 

 Topsoil Subsoil 
Minimum 5.0 0 
Maximum 80.0 90.0 
Mean 25.6 39.1 
Median 20.0 36.0 

142 



DRAFT 

Variance 
Standard deviation 
Skewness 

255.5 
16.0 

1.24 

936.8 
30.6 

0.16 

Table 4. The results of an analysis of variance for the top- and sub-soil clay content 
along the Sandford transect. 

Source of variation 

Topsoil clay content (%) 

Degrees of 
freedom 

Sum of 
squares 

Mean 
square 

Variation due to geology 14 
Residual variance 306 
Total variance 320 

53013.4 
28744.5 
81757.8 

3786.7 
93.9 

255.5 

Component 
of variance 

176.1 
93.9 

255.5 

Variation due to geology 
Residual variance 
Total variance 

Subsoil clay content (%) 
14               187905.8         13421.8              622.7 

306 111874.6 365.6 26S£- 
320 299780.4  936.8 936.8 
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FIGURE CAPTIONS 

Figure 1 (a) Comparisons made in computing the variogram, (b) Comparisons for the Haar 
wavelet, and (c) Points embraced when computing the wavelet-based variograms 

with     four Daubechies's coefficients. 
Figure 2. The Haar wavelet. 
Figure 3. Trace of the electrical conductivity (mS cm"1) transformed to common logarithms 

at Caragabal, with the solid line joining the data. 
Figure 4 Variograms of the electrical conductivity. The usual variogram is shown by • , 

the wavelet-based variogram with Daubechies's 4 coefficients by x, and with 
Daubechies's 6 coefficients by D. 

Figure 5 Sandford transect; (a) clay content in topsoil and (b) subsoil, with data shown by 
the        solid lines and the geologic boundaries,by the dashed bold lines. 
Figure 6 Variograms of the clay content in the topsoil at Sandford: (a) for the raw data, and 

(b) for the residuals from the means of the geologic classes. The usual variogram is 
shown by • , the wavelet-based variogram with Daubechies's 4 coefficients by x, and 
with Daubechies's 6 coefficients by D. 

Figure 7 Variograms of the clay content in the subsoil at Sandford: (a) for the raw data, and 
(b) for the residuals from the means of the geologic classes. The usual variogram is 
shown by • , the wavelet-based variogram with Daubechies's 4 coefficients by x, and 
with Daubechies's 6 coefficients by D. 

Figure 8 Plots of the simulated data using LU decomposition: (a) by a spherical function 
with zero nugget, unit sill and a range of 45 units (thin line), superimposed by a 
35-point moving average shown by the thicker line, (b) by a spherical function with 
zero nugget, unit sill, range of 15 units and a random stepped process with an average 
extent of 45 units, shown as the heavier dashed line, and (c) by a spherical function 
with zero nugget, unit sill and a range of 45 units with a linear trend of 0.02 added. 

Figure 9 Variograms of the values simulated by a spherical function with zero nugget, unit 
sill and a range of 45 units. The usual variogram is shown by • , the wavelet-based 
variogram with Daubechies's 4 coefficients by x, and with Daubechies's 6 
coefficients by D. 

Figure 10 Variograms of the values simulated by a spherical function with zero nugget, unit 
sill, a range of 15 units, and a step function with an average extent of 45 units: (a) for 
the raw data, and (b) on the residuals from the means of the classes created by the 
step function. The usual variogram is shown by • , the wavelet-based variogram with 
Daubechies's 4 coefficients by x, and with Daubechies's 6 coefficients by D. 

Figure 11 Variograms of the values simulated by a spherical function with zero nugget, unit 
sill and a range of 45 units smoothed by a 35-point moving average. The usual 
variogram is shown by • , the wavelet-based variogram with Daubechies's 4 
coefficients by x, and with Daubechies's 6 coefficients by D. 

Figure 12 Variograms of the values simulated by a spherical function with zero nugget, unit 
sill and a range of 45 units with an added linear trend of 0.02. The usual variogram is 
shown by • , the wavelet-based variogram with Daubechies's 4 coefficients by x, 
and with Daubechies's 6 coefficients by D. 
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